1.  n(n+1)(n+2)        6

2.  n(n+1)(2n+1)         6

3.  n(n+1)(2n+7)         6

4.  n(n+1)(2n+9)         6

4

<u>n(n+1)(2n+7)<br> </u>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6

Explanation :
No Explanation available for this question

# 9 balls are to be placed in 9 boxes; and 5 of the balls cannot fit into 3 small boxes. The number of ways of arranging one ball in each of the boxes is

1.  18720

2.  18270

3.  17280

4.  12780

4

17280

Explanation :
No Explanation available for this question

# If nPr =30240 and nCr=252then the ordered pair (n, r) is equal to

1.  (12, 6)

2.  (10, 5)

3.  (9, 4)

4.  (16, 7)

4

(10, 5)

Explanation :
No Explanation available for this question

1.  128

2.  256

3.  512

4.  1024

4

512

Explanation :
No Explanation available for this question

1.  21

2.  23

3.  25

4.  27

4

23

Explanation :
No Explanation available for this question

1.  4C

2.  4C + 1

3.  3C

4.  2C

4

2C

Explanation :
No Explanation available for this question

1.  e

2.  e2 + e

3.  e2

4.  e2-e

4

e<sup>2</sup>-e

Explanation :
No Explanation available for this question

1.  2 loge 2-2

2.  2 - loge 2

3.  2 loge 4

4.  loge 4

4

2 - log<sub>e</sub> 2

Explanation :
No Explanation available for this question

# If α + β = -2 and α2 + β3= -56, then the quadratic equation whose roots are α and β is :

1.  x2 + 2x - 16 = 0

2.  x2 + 2x  +15 = 0

3.  x2 + 2x - 12 = 0

4.  x2 + 2x - 8 = 0

4

x<sup>2</sup> + 2x - 8 = 0

Explanation :
No Explanation available for this question

# The cubic equation whose roots are thrice to each of the roots of x3 + 2.x2- 4x +1 = 0 is

1.  x3 - 6x2 + 36x + 27 = 0

2.  x3 + 6x2 + 36x + 27 = 0

3.  x3 - 6x2 - 36x + 27 = 0

4.  x3 + 6x2 - 36x + 27 = 0

4