# The sum of the fourth powers of the roots of the equation x3 + x+ 1 = 0 is

1.  -2

2.  -1

3.  1

4.  2

4

2

Explanation :
No Explanation available for this question

# The locus of centre of a circle which passes through the origin and cuts off a length of 4 units from the line x = 3 is

1.  y2+6x = 0

2.  y2+6x = 13

3.  y2+6x = 10

4.  x2+6y = 13

4

y<sup>2</sup>+6x = 13

Explanation :
No Explanation available for this question

# The diameters of a circle are along 2x + y - 7 = 0 and x + 3y - 11 = 0. Then, the equation of this circle, which also passes through (5, 7), is

1.  x2 + y2 - 4x - 6y -16 =0

2.  x2 + y2 - 4x - 6y -20 =0

3.  x2 + y2 - 4x - 6y -12 =0

4.  x2 + y2 + 4x + 6y -12=0

4

x<sup>2</sup> + y<sup>2 </sup>- 4x - 6y -12 =0

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# The point (3, -4) lies on both the circles x 2 + y2 - 2x + 8y + 13 = 0 and x2  + y2  - 4x + 6y + 11 = 0. Then the angle

1.  60o

2.  tan -1(1/2)

3.  tan -1(3/5)

4.  135o

4

135<sup>o</sup>

Explanation :
No Explanation available for this question

# The equation of the circle which passes through the origin and cuts orthogonally each of the circles x2 + y2 -6x+ 8 = 0 and x2 + y2 - 2x

1.  3x2 + 3y2 -8x -13y = 0

2.  3x2 + 3y2 -8x +29y= 0

3.  3x2 + 3y2 +8x +29y = 0

4.  3x2 + 3y2 -8x -29y = 0

4

3x<sup>2</sup> + 3y<sup>2 </sup>-8x +29y= 0

Explanation :
No Explanation available for this question

# The number of normals drawn to the parabola y2= 4x from the point (1, 0) is

1.  0

2.  1

3.  2

4.  3

4

1

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

1.  0

2.  a + b + c

3.  (a + b + c )2

4.  ( a + b + c )3

4

( a + b + c )<sup>3</sup>

Explanation :
No Explanation available for this question

1.  1/√5

2.  1/2

3.  3/5

4.  4/5

4