# A plane meets the coordinate axes at A, B, C so that the centroid of the triangle ABC is (1, 2, 4). Then the equation of the plane is :

1.  x + 2y + 4z = 12

2.  4x + 2y + z = 3

3.  x + 2y + 4z = 3

4.  4x + 2y + z = 3

4

4x + 2y + z = 3

Explanation :
No Explanation available for this question

# If (2, 3, -3) is one end of a diameter of the sphere x2 + y2 + z2 - 6x - 12y - 2z + 20 = 0, then the other end of the diameter is :

1.  ( 4, 9, -1)

2.  (4, 9, 5)

3.  (-8, -15, 1)

4.  (8, 15, 5)

4

(4, 9, 5)

Explanation :
No Explanation available for this question

1.  0

2.  1

3.  1/2

4.  -1/2

4

0

Explanation :
No Explanation available for this question

# If f : R→R defined by

1.  1

2.  5

3.  6

4.  0

4

5

Explanation :
No Explanation available for this question

# is equal to :

1.   f(x)

2.  0

3.   -f(x)

4.  2 f(x)

4

0

Explanation :
No Explanation available for this question

# If

1.  1

2.  2

3.  3

4.  4

4

2

Explanation :
No Explanation available for this question

# y = sin (m sin-1x) ⇒(1-x2)y2-xy1 = (here yn denotes dny/dxn)

1.  m2y

2.  - m2y

3.  2m2y

4.  - 2m2y

4

- m<sup>2</sup>y

Explanation :
No Explanation available for this question

# The height of the cone of maximum volume inscribed in a sphere of radius R is :

1.  R/3

2.  2R/3

3.  4R/3

4.  4R/√ 3

4

4R/3

Explanation :
No Explanation available for this question

# The longest distance of the point (a, 0) from the curve 2x2 + y2 = 2x is

1.  1+a

2.  |1-a|

3.

4.

4

Explanation :
No Explanation available for this question

1.  3u

2.  4u

3.  3 sin u

4.  3 tan u

4