# If the lengths of the tangents drawn to the circles x2 + y2 - 8x + 40 = 0, 5x2 + 5y2 - 25x + 80 = 0 x2 +

1.  ( 8, 15/2)

2.  (-8, 15/2)

3.  (8, -15/2)

4.  (-8, -15/2)

4

(8, -15/2)

Explanation :
No Explanation available for this question

# The equation of the circle concentric with the circle x2 + y2 - 6x + 12y + 15 = 0and of double its area is :

1.  x2 + y2 - 6x + 12y +15 = 0

2.  x2 + y2 - 6x + 12y - 30 = 0

3.  x2 + y2 - 6x + 12y - 25 = 0

4.  x2 + y2 - 6x + 12y - 20 = 0

4

x<sup>2</sup> + y<sup>2</sup> - 6x + 12y +15 = 0

Explanation :
No Explanation available for this question

# If the circle x2 + y2 + 2x + 3y + 1 = 0 cuts another circle x2+y2 + 4x + 3y + 2 = 0 in A and B, then the equation of the circle with AB a

1.  x2 + y2 + x  + 3y + 3 = 0

2.  2x2 +2y2 + 2x + 6y + 1 = 0

3.  x2 + y2 +x +6y + 1 = 0

4.  2x2 + 2y2 + x + 3y +1 = 0

4

2x<sup>2</sup> +2y<sup>2</sup> + 2x + 6y + 1 = 0

Explanation :
No Explanation available for this question

# The length of the common chord of the circles of radii 15 and 20 whose centres are 25 units of distance apart, is :

1.  12

2.  16

3.  24

4.  25

4

16

Explanation :
No Explanation available for this question

# Let M be the foot of the perpendicular from a point P on the parabola y2 = 8(x - 3) onto its directrix and let S be the focus of the parabola. If  ΔSPM is an equilateral triangle, then P =

1.  ( 4√ 3, 8 )

2.  ( 8, 4√ 3 )

3.  ( 9, 4√ 3 )

4.  ( 4√ 3, 9 )

4

( 9, 4&#8730; 3 )

Explanation :
No Explanation available for this question

# The equation of the hyperbola which passes through the point (2, 3) and has the asymptotes 4x + 3y - 7 = 0 and x - 2y - 1 = 0 is :

1.  4x2 + 5xy - 6y2 - 11x + 11y + 50 = 0

2.  4x2 + 5xy - 6y2 - 11x + 11y - 43 = 0

3.  4x2 - 5xy - 6y2 - 11x + 11y + 57 = 0

4.  x2 - 5xy - y2 - 11 x + 11y - 43 = 0

4

4x<sup>2</sup> - 5xy - 6y<sup>2</sup> - 11x + 11y + 57 = 0

Explanation :
No Explanation available for this question

# The product of the perpendicular distances from any point on the hyperbola (x2/a2) - (y2/b2

1.  a2b2 / ( a2 - b2 )

2.  a2b2 / ( a2 + b2 )

3.  ( a2 + b2 ) / a2b2

4.  ( a2 - b2 ) / a2b2

4

a<sup>2</sup>b<sup>2</sup> / ( a<sup>2</sup> + b<sup>2</sup> )

Explanation :
No Explanation available for this question

# If the lines 2x + 3y + 12 = 0, x-y + k = 0 are conjugate with respect to the parabola y2 = 8x, then k =

1.  10

2.  7/2

3.  -12

4.  -2

4

-12

Explanation :
No Explanation available for this question

# The point dividing the join of (3, -2, 1} and (-2, 3, 11) in the ratio 2 : 3 is :

1.  (1, 1, 4)

2.  (1, 0, 5)

3.  (2, 3, 5)

4.  (0, 6, -1)

4

(1, 0, 5)

Explanation :
No Explanation available for this question

1.  a < b < c

2.  b < a < c

3.  b < c < a

4.  c < a < b

4