# If u(x,y) = y logx+x logy,then uxuy-uxlogx-uy logy+logx logy is equal to

1.  0

2.  -1

3.  1

4.  2

4

1

Explanation :
No Explanation available for this question

# is equal to

1.  1/2√(1+x)+c

2.  (2/3)(1+x)3/2+c

3.  √(1+x)+c

4.  2(1+x)3/2+c

4

(2/3)(1+x)3/2+c

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

1.  1

2.  2

3.  3

4.  4

4

4

Explanation :
No Explanation available for this question

# is equal to

1.  π/6

2.  π/4

3.  π/2

4.  π

4

π/4

Explanation :
No Explanation available for this question

1.  log(2√2)+(π/3)

2.  log(2√2)+(π/6)

3.  log(2√2)+(π/12)

4.  log(2√2)+(π/2)

4

log(2√2)+(π/12)

Explanation :
No Explanation available for this question

# If [2,6] is divided into four intervals of equal length,then the approximate value of using Simpson's rule is

1.  0.3222

2.  0.2333

3.  0.5222

4.  0.2555

4

0.5222

Explanation :
No Explanation available for this question

# The differential equation of the family of parabola with focus as the origin and the axis as x-axis is

1.  y(dy/dx)2+4x(dy/dx)=4y

2.  -y(dy/dx)2=2x(dy/dx)-y

3.  y(dy/dx)2+y=2xy(dy/dx)

4.  y(dy/dx)2+2xy(dy/dx)+y=0

4

-y(dy/dx)2=2x(dy/dx)-y

Explanation :
No Explanation available for this question

# Solution of (dy/dx)=(xlogx2+x)/(siny+ycosy) is

1.  y siny = x2 logx+c

2.  ysiny = x2+c

3.  y sin y = x2+logx

4.  y sin y = x logx+c

4

y sin y = x logx+c

Explanation :
No Explanation available for this question

# The general solution of y2dx+(x2-xy+y2)dy = 0 is

1.  tan-1(y/x)=logy+c

2.  tan-1(x/y)+logx+c=0

3.  log(x+2y+√x√y)+logy+c=0

4.  sinh-1(x/y)+logy+c=0

4