Eamcet - Maths - Trigonometric Ratios And Identities Test

Test Instructions :

1. The Test is 1hr duration.
2. The Test Paper consists of 30 questions. The maximum marks are 30.
3. All the questions are multiple choice question type with three options for each question.
4. Out of the three options given for each question, only one option is the correct answer.
5. Each question is allotted 1 mark for each correct response.
6. 0.25 will be deducted for incorrect response of each question.
Start Test

   Time Left : 00 : 30    : 00

In a ΔABC, cos[(B+2C+3A)/2]+cos[(A-B)/2] is equal to

  

  

  

  

If a, b, c form a geometric progression with common ratio r,then the sum of the ordinates of the Points of intersection of the line ax + by + c = 0 and the curve x + 2y2=0

  

  

  

  

P(-1, -3) is a centre of similitude for the two circles x2+y2=1 and x2+y2-2x-6y+6=0. The length of the common tangent through P to the circle is

  

  

  

  

sin 100 +sin 200 +sin  400 +sin 500 -sin 700 -sin 800=

  

  

  

  

cosec2 θ. cot2 θ- sec2 θ. tan2 θ-( cot2 θ- tan2 θ)( sec2 θ. cosec2θ-1)=

  

  

  

  

cos (θ + α).cos (θ - α)+ sin (θ + α). sin(θ - α)=

  

  

  

  

The period of cot(5x+3)+sin(3x+4)/ sec(3-4x)-cos(4-6x) is

  

  

  

  

sin 120 sin 240 sin 480 sin 840 =

  

  

  

  

The range of sinn-1 √x is

  

  

  

  

If sin-1x+sin-1(1-x)=cos-1x, then x ε to

  

  

  

  

sin (θ/2)sin (7θ/2)+sin(3θ/2). Sin(11θ/2)- sin 2θsin 5θ=

  

  

  

  

(sin θ+ cosec θ)2+(cos θ+ sec θ)2 =

  

  

  

  

The function f(x) = xe-x (x ∈R) attains a maximum value at x = …….

  

  

  

  

If Sinx Sinhy= cos θ and Cosx Coshy= Sinθ, then Cosh2y + Cos2x

  

  

  

  

If the area of the triangle formed by the pair of lines 8x2-6xy+y2=0 and the line 2x + 3y = a is 7 then

  

  

  

  

If tan400= λ then (tan 1400- tan 1300)/(1+ tan 1400 tan 1300) =

  

  

  

  

cos θ- cos (600+ θ)-cos (600- θ)=

  

  

  

  

tan 82(10/2)=

  

  

  

  

sec 2550

  

  

  

  

If A+B+C= 1800 then 4 cos(π-A/4)cos (π-B/4) cos(π-C/4)=

  

  

  

  

I: If tan A + tan B = P and Cot A + Cot B = q then cot (A + B) = (q-p) / pq II : If 2 tan A + cot A = tan B then cot A +2 tan (A –B) = 0

  

  

  

  

If cos θ= 3/5 and θ is not in the first quadrant,then (5tan(π+ θ)+4 cos(π- θ))/(5sec(2π-θ)- 4 cot(2π+θ) )

  

  

  

  

The period of sin x sin(1200+x) sin(1200-x)is

  

  

  

  

If A+B+C = 3600 then tan A/2+ tan B/2+ tan C/2=

  

  

  

  

2(sin6 x+ cos6 x)-3(sin4 x+ sin2 x)+1=

  

  

  

  

The minimum of cos2(1200+x)+ cos2(1200-x)is

  

  

  

  

The maximum value of sin2 θ+ cos4 θ is

  

  

  

  

If A=cos 150- cos 750,B= tan 150+ tan 750, C= cos2450 – sin2 150 then ascending order is

  

  

  

  

1- cos A+ cos B- cos (A+B)/1+cos A- cos B- cos(A+B)=

  

  

  

  

tan (5π/32)+2 tan (5π/16)+ 4 tan (5π/8)- cot (5π/32)=

  

  

  

  

Note:
  • Click the 'Submit Test' button given in the bottom of this page to Submit your answers.
  • Test will be submitted automatically if the time expired.
  • Don't refresh the page.