Eamcet - Maths - Trigonometric Ratios And Identities Test

Time Left : 00 : 30    : 00

If α,β,γ are the roots of the equation x3+px2+qx+r = 0 then the coefficient of x in the cubic equation whose roots are α(β+γ), β(γ+α) and γ(α+β) is

If sin θ+ cos θ=a then sin4 θ+ cos 4 θ=

The equation of the sphere through the points (1,0,0) (0,1,0) and (1,1,1) and having the smallest radius

cos 60 sin 240cos 720 is equal to

If A+B+C= 1800 then sin3 A cos (B-C)+ sin3 B cos (C-A)+ sin3 C cos (A-B)=

tan x + tan(x + π/3)+tan(x+2π/3)=3⇒tan3x=

tan 5850. cot 4050+ tan6750 cot 7650=

If A+B+C= 1800 then cos 2A+ cos 2B+ cos 2C+1=

If cos x= tan y, cos y= tan z, cos z=tan x then

(cos A+ cos 3A+cos 5A+cos 7A)/ (sin A+sin 3A+sin 5A+sin 7A)=

(tan 230+ tan220)/(1- tan 230 .tan220)=

If x = sint; y = sin pt then (1-x2) (d2y/dx2) -x(dy/dx) +p2y =

P(-1, -3) is a centre of similitude for the two circles x2+y2=1 and x2+y2-2x-6y+6=0. The length of the common tangent through P to the circle is

cos π/11 cos 2π/11 cos 3π/11 cos 4π/11 cos 5π/11=

cos A+sin(2700+A)-sin(2700-A)+cos(1800-A)=

The extreme values of cos x cos ((2π/3)+x) cos ((2π/3)-x) is

tan α+ 2 tan α+ 4 tan 4α+ 8 cot 8α =

sec4 θ (1- sin4θ) - tan2θ=

1+(1+2)/2!+(1+2+22)/3!+(1+2+22+23)/4!+ ....... =

(cos 6x+ 6 cos 4x+15 cos 2x+10)/( cos 5x+5 cos 3x+10 cos x)=

The value of sin θ / ( sin2(π/8+ θ/2)- sin2(π/8-θ/2)) =

If sin-1x+sin-1(1-x)=cos-1x, then x ε to

The distance between the parallel lines given by (x + 7y)2+4√2(x+7y)-42=0 is

2 cos θ-cos 3θ- cos 5θ- 16 cos3θsin2 θ=

sin 3θ/2 cot θ/2 cosθ=

The value of k such that the lines 2x -3y + k = 0,3x - 4y - 13=0 and 8x - 11y -33 = 0are concurrent, is

If x=2/(3+√7),then (x-3)2 is equal to

cos2 10+cos2 20+ cos2 30+.... cos2 900 =

If Sin6θ + Cos6θ + Kcos2θ=1 then k=

If cot θ=-3/4 and θ is not in the second quadrant then 5 sin θ+10 cos θ+9 sec θ-16 cosecθ- 4cot θ=

Note: