### Eamcet - Maths - Differentiation Test

#### Time Left : 00 : 30    : 00

If |x|

d/dx {Tan-14x/1+5x2+Tan-12+3x/3-2x}=

If x= acos3θ, y= asin3θ then d2y/dx2 at θ=π/4 is

If ay= sin(x+y) then y2+(1+y1)3 y=

If sin2 mx+cos2 ny=a2 then dy/dx=

If x2+5xy+y2-2x+y-6=0 then y’’ at (-1,1) is

d/dx{log(x2/ex)}=

If x-y=Sin-1 x-Sin-1 y then dy/dx=

If ‘f’ is differentiable function, f(1)=0, f1(1)=3/5 and y=f(e2x)ex then (dy/dx)x=0 =

If |x|

The derivative of Sin-1(3x-4x3) w.r.to Tan-1x/√ (1-x2) is

If y=sin(sin x)then y2+(tan x)y1+y(cos2x)=

d/dx{Sin-12x/1+x2}=

d/dx{Tan-1(x/1+√1-x2)}=

If x= a cos θ (1+cos θ), y=sin θ(1+cos θ) then (dy/dx)θ=π/2

d/dx{Tan-1(a+bcos x/b+a cos x)}=

If x= 2/t2, y=t3-1, then d2y/dx2=

d/dx{Tan-1√(1-sin x/1+sin x)}=

d/dx{Tan-1(3a2x-x3/a3-3ax2)}=

If x= a(θ+sin θ), y=a(1-cosθ) then d2y/dx2 at θ=π/4 is

d/dx { log√(cosec x+1)-√(cosec x-1)}=

The derivative of Sin-12x/1+x2 w.r.to Tan-12x/1-x2is

If x= 2 cos t- cos 2t, y= 2 sin t- sin 2t then dy/dx=

d/dx{sin2((1-x2)/(1+x2))}

If f(x)=x2sin(1/x) for x≠0, f(0)=0 then

The derivative of axlog x+(x2-1) sin x w.r.t x is

If x= sin t cos 2t, y= cos t sin 2t then (dy/dx)t=π/4

If ax2+2hxy+by2=1 then (hx+by)3y2=

If f(x)=√(x+2√(2x-4))+ )=√(x-2√(2x-4)) then

If y= xsin x+(sin x)x then dy/dx=

Note: