Eamcet - Maths - Binomial Theorem Test

Test Instructions :

1. The Test is 1hr duration.
2. The Test Paper consists of 30 questions. The maximum marks are 30.
3. All the questions are multiple choice question type with three options for each question.
4. Out of the three options given for each question, only one option is the correct answer.
5. Each question is allotted 1 mark for each correct response.
6. 0.25 will be deducted for incorrect response of each question.
Start Test

   Time Left : 00 : 30    : 00

The general term of (2a-3b)-1/2 is

  

  

  

  

If two consecutive terms in the expansion of (x+a)n are equal where n is a positive integer then (n+1)a/x+a is

  

  

  

  

The coefficient of xr (0

  

  

  

  

If (1+x+x2)n =Σr=02n rxr then a0+a2+a4+……….+a2n=

  

  

  

  

If x is so small that x2 and higher powers of x may be neglected then (1-x)1/2(1+x)2/3/(1-x)1/2

  

  

  

  

x2n-1+y2n-1 is divisible by x+y if n is

  

  

  

  

The coefficient of x10 in 1-2x+3x2/1-x is

  

  

  

  

5th term of (2x2+3/x)5 is 10. Then x=

  

  

  

  

The term independent of x in (x+1/x)6 is

  

  

  

  

If |x|

  

  

  

  

If the coefficient of rth term and (r + l)th term in the expansion of (1 + x)20 are in the ratio 1 : 2, then r is equal to:

  

  

  

  

If xr occurs in the expansion (x+1/x2)2n, then its coefficient is:

  

  

  

  

(1.02)6 + (0.98)6 =

  

  

  

  

If (3 + 4i) is a root of x2+px+q=0, then (p, q) is:

  

  

  

  

C2+C4+C6+……….. =

  

  

  

  

If the 3rd, 4th and 5th terms of (x+a)n are 720, 1080 and 810 respectively then (x,a,n)=

  

  

  

  

The term independent of x in the expansion of (1+x+2x3)(3x2/2-1/3x/)9 is

  

  

  

  

If the middle term of (1+x)2n is 1.3.5...(2n-1)k/n! then k=

  

  

  

  

If n is even then C02-C12+C22-……….+(-1)n Cn2 =

  

  

  

  

C0-2. C1+3. C2………..+(-1)n(n+1).Cn =

  

  

  

  

(√2+1)6+(√2-1)6=

  

  

  

  

The ratio of the coefficient of x15 to the term independent of x in (x2+2/x)15 is

  

  

  

  

The coefficient of x7 in (1+2x+3x2+4x3+……..∞)-3 is

  

  

  

  

C0+3.C1+5.C2+……..+(2n+1).Cn =

  

  

  

  

3.C0-5.C1+7.C2-9.C3+…………(n+1) terms =

  

  

  

  

If the 5th term is 24 times the 3rd term in the expansion of (1+x)11 then x=

  

  

  

  

xn-1 is divisible by x-k. Then the least +ve integral value of K is

  

  

  

  

The 4th term of (1-2x)-1 when x=1/3 is

  

  

  

  

nC0+nC1+nC2+………+nCn =

  

  

  

  

The coefficient of x7 in (1-2x+3x2-4x3+……..∞)-4 is

  

  

  

  

Note:
  • Click the 'Submit Test' button given in the bottom of this page to Submit your answers.
  • Test will be submitted automatically if the time expired.
  • Don't refresh the page.