# The integers 1, 2, ….., 40 are written on a blackboard. The following operation is then repeated 39 times: In each repetition, any two numbers, say a and b,currently on the blackboard are erased and a new number a+b– 1 is written. What will be the number left on the board at the end

1.  820

2.  821

3.  781

4.  819

5.  780

5

781

Explanation :
No Explanation available for this question

# In a triangle ABC, the lengths of the sides AB and AC equal 17.5 cm and 9 cm respectively. Let D be a point on the line segment BC such that AD is perpendicular to BC. If AD = 3 cm, then what is the radius (in cm) of the circle circumscribing the triangle ABC

1.  17.05

2.  27.85

3.  22.45

4.  32.25

5.  26.25

5

26.25

Explanation :
No Explanation available for this question

# What are the last two digits of 72008

1.  21

2.  61

3.  01

4.  41

5.  81

5

01

Explanation :
No Explanation available for this question

# ABC is a 3 digit number where A > 0 and the number is equal to the sum of the factorials of the 3 digits. Then the value of B is

1.  9

2.  7

3.   4

4.  2

4

4

Explanation :
No Explanation available for this question

# If the roots of the equation x3−ax2+ bx – c = 0 are three consecutive integers, then what is the smallest possible value of b

1.  –(1/√3)

2.  –1

3.  0

4.  1

5.  (1/√3)

5

–1

Explanation :
No Explanation available for this question

# Consider obtuse-angled triangles with sides 8cm, 15 cm andxcm. Ifxis an integer, then how many such triangles exist

1.  5

2.  21

3.  10

4.  15

5.  14

5

10

Explanation :
No Explanation available for this question

# How many integers, greater than 999 but not greater than 4000, can be formed with the digits 0, 1, 2, 3 and 4, if repetition of digits is allowed

1.  499

2.  500

3.  375

4.  376

5.  501

5

376

Explanation :
No Explanation available for this question

# What is the number of distinct terms in the expansion of (a+b+c)20

1.  231

2.  253

3.  242

4.  210

5.  228

5

231

Explanation :
No Explanation available for this question

# Consider a square ABCD with midpoints E, F, G, H of AB, BC, CD and DA respectively. Let L denote the line passing through F and H. Consider points P and Q, on L and inside ABCD, such that the angles APD and BQC both equal 120°. What is the ratio of the area of ABQCDP to the remaining area inside ABCD

1.  (4√2)/3

2.  2 + √3

3.  (10−3√3)/9

4.  1 + (1/√3)

5.  2√3−1

5

2√31

Explanation :
No Explanation available for this question

1.  1 ≤ m≤ 3

2.  4 ≤ m≤ 6

3.  7 ≤ m≤ 9

4.  10 ≤ m≤ 12

5.  13 ≤ m≤ 15

5