# The volume of the parallelepiped whose sides are OA=(λ+2)i+ (λ+2)(λ+1)j+k, OB=( λ+3)i+( λ+2)( λ+3)j+k and OC=( λ+4)i+( λ+3)( λ+4)j+k is

1.  2λ

2.  3 λ

3.  4 λ

4.  2

4

2

Explanation :
No Explanation available for this question

# The volume of the tetrahedrone formed by (1, 2, 3), (4, 3, 2), (5, 2, 7), (6, 4, 8) is

1.  22/3

2.  11/3

3.  1/3

4.  16/3

4

16/3

Explanation :
No Explanation available for this question

# The volume of the tetrahedrone with vertices at 0, 0, 0), (0, 1, 0), (0, 0, 1) is

1.  1

2.  1/2

3.  1/3

4.  1/6

4

1/6

Explanation :
No Explanation available for this question

# If a, b, c are non-coplanar vectors then [a.(bxc)/(cxa).b]+[b.(axc)/c.(axb)]=

1.  0

2.  1

3.  2

4.  -1

4

0

Explanation :
No Explanation available for this question

# {a. (bxc)}i+{a. (bxj)}j+{a. (bxk)}k=

1.  2(axb)

2.  3(axb)

3.  3(axb)

4.  none

4

3(axb)

Explanation :
No Explanation available for this question

# (a-b).(b-c)x(c-a)=

1.  a.(bxc)

2.  2a.(bxc)

3.  3a.(bxc)

4.  0

4

0

Explanation :
No Explanation available for this question

# If u, v,w are three non-coplanar vectors then (u+v-w).(u-v)x(v-w)=

1.  0

2.  u.vxw

3.  u.wxv

4.  3u.vxw

4

3u.vxw

Explanation :
No Explanation available for this question

# If a,b,c are linearly independent, then [2a+b 2b+c 2c+a]/[a b c]=

1.  9

2.  8

3.  7

4.  none

4

9

Explanation :
No Explanation available for this question

# If a,b,c are linearly independent, (a+2b).(2b+c)x(5c+a)/a.(bxc)=k then k is

1.  10

2.  14

3.  18

4.  12

4

12

Explanation :
No Explanation available for this question

# If a, b, c are three non-coplanar vectors and λ is a real number, then the vectors a+2b+3c, λb+4c and (2λ-1)c are non-coplanar for

1.  all values of λ

2.  no value of λ

3.  all except two values of λ

4.  all except one value of λ

4