# If (a1+ib1)(a2+ib2)……(an+ibn)=A+iB,then

1.  nπ-Tan-1(B/A)

2.  nπ+Tan-1(B/A)

3.  nπ-Tan-1(A+B)

4.  none

4

nπ+Tan-1(B/A)

Explanation :
No Explanation available for this question

# If u and v are unit vectors and θ is the acute angle between them,  2ux3v is a unit vector for

1.  Exactly two values of θ

2.  More than two values of θ

3.  No value of θ

4.  Exactly one value of θ

4

Exactly one value of θ

Explanation :
No Explanation available for this question

# If a is any vector then (axi)2+(axj)2+(axk)2=

1.  a2

2.  2a2

3.  3a2

4.  4a2

4

2a2

Explanation :
No Explanation available for this question

# If three vectors a, b, c are such that a≠0, and axb=2(axc)|a|=|c|=1, |b|=4 and the angle between b and c is cos-1(1/4), then b-2c=λa, where λ =

1.  4

2.  3

3.  2

4.  1

4

4

Explanation :
No Explanation available for this question

# The real value of θ for which the expression is a real number is

1.  Θ=nπ

2.  Θ=nπ/2

3.  Θ=nπ/3

4.  None

4

Θ=nπ

Explanation :
No Explanation available for this question

# The vector area of the parallelogram whose adjacent sides are i+j+k, 2i-j+2k is

1.  3(i+k)

2.  3(i-k)

3.  2i+j-2k

4.  -2i-j-2k

4

3(i-k)

Explanation :
No Explanation available for this question

# If is purely imaginary then θ=

1.  nπ±(π/3),nZ

2.  nπ+(-1)n(π/2),nZ

3.  nπ±(π/4),nZ

4.  none

4

nπ+(-1)n(π/2),nZ

Explanation :
No Explanation available for this question

# The vector area of the parallelogram whose diagonals are i+j-2k, 2i-j+2k is

1.  1/2(i+4j-3k)

2.  1/2(i-4j+3k)

3.  1/2(i+4j+3k)

4.  1/2(i-4j-3k)

4

1/2(i-4j-3k)

Explanation :
No Explanation available for this question

# If is purely imaginary then α=

1.  n π+(π/4)

2.  n π±(π/2)

3.  2 n π±(π/4)

4.  2 n π+(π/2)

4

n π+(π/4)

Explanation :
No Explanation available for this question

# The area of the parallelogram whose diagonals are i-3j+2k, -i+2j is

1.  4√29 sq.unit

2.  1/2 √21 sq.unit

3.  10√3 sq.unit

4.  1/2√270 sq.unit

4