# The length of the longer diagonal of the parallelogram constructed on 5a+2b and a-3b. If it is given that |a=2√2,|b|=3 and (a, b)=π/4 is

1.  15

2.  √113

3.  √593

4.  √369

4

√593

Explanation :
No Explanation available for this question

# If the angle θ between the vectors a=2x2+4xj+k and b=7i-2j+xk is such that 900

1.  (-4, 7)

2.  [-4, 7]

3.  R-[-4, 7]

4.  R-(-4, 7)

4

R-[-4, 7]

Explanation :
No Explanation available for this question

# The values of x for which the angle between the vectors a=xi-3j-k and b=2xi+xj-k is acute, and the angle between the vector b and the axis of ordinates is obtuse, are

1.  1, 2

2.  -2, -3

3.  all x

4.  all x>0

4

all x<0

Explanation :
No Explanation available for this question

# The multiplicative inverse of (3+4i)i/25 is

1.  4+3i

2.  4-3i

3.  -4-3i

4.  -4+3i

4

-4-3i

Explanation :
No Explanation available for this question

# The vector r satisfying the conditions that i) it is perpendicular to 3i+2i+2k and 18i-22j-5k ii) it makes an obtuse angle with y-axis, iii)|r|=14 is

1.  2(-2i-3i+6k)

2.  2(2i-3i+6k)

3.  4i+ 6j-12k

4.  none

4

4i+ 6j-12k

Explanation :
No Explanation available for this question

# The scalar product of the vector i+j+k with the unit vector parallel to sum of the vectors 2i+ 4j-5k and λi+2j+ 3k is equal to 1. Then the value of the constant λ is

1.  -1

2.  1

3.  0

4.  none

4

1

Explanation :
No Explanation available for this question

# Express (2-3i)3 in the form of a+ib

1.  46+27i

2.  46-27i

3.  -46+27i

4.  -46-9i

4

-46-9i

Explanation :
No Explanation available for this question

# Given the vectors p=(3, -1, 5) and q=(1, 2, -3). A vector r is such that it is perpendicular to z-axis and satisfies the conditions r.p=9, r.q=-4. Then r=

1.  (2, -3, 0)

2.  (-2, 3, 0)

3.  (2, -3, 1)

4.  none

4

(2, -3, 0)

Explanation :
No Explanation available for this question

# If a=4i+5j-k, b=i-4j+5k, c=3i+j-k such that and p.c=21 then p=

1.  6(i-j-k)

2.  7(i+j+k)

3.  7(i-j-k)

4.  6(i+j+k)

4

7(i-j-k)

Explanation :
No Explanation available for this question

1.  i+2j+2k

2.  i-2j-2k

3.  i+2j-2k

4.  i-2j+2k

4