# If tn=1/4(n+2)(n+3) for n=1,2,3… then 1/t1+1/t2+1/t3+…..1/t2003=

1.  4006/3006

2.  4003/3007

3.  4006/3008

4.  4006/3009

4

4006/3009

Explanation :
No Explanation available for this question

# Let S(k)=1+3+5+….+(2k-1)=3+k2 Then which of the following is true

1.  s(1) is correct

2.  principle of mathematical induction can be used to prove the formula

3.  S(k)≠S(k+1)

4.  S(k)=>S(k+1)

4

S(k)=>S(k+1)

Explanation :
No Explanation available for this question

# The sum of the first n terms of the series 12+2.22+32+2.42+52+2.62+…. Is n(n+1)2/2 when n is even. When n is odd the sum is

1.  3n(n+1)/2

2.  [n(n+1)/2]2

3.  n(n+1)2/4

4.  n2(n+1)/2

4

n2(n+1)/2

Explanation :
No Explanation available for this question

# Statement-1  :For every natural number n≥2, 1/√1+1/√2+….+1/√n>√n Statement-2 :For  every  natu

1.  State1llent-1, is true, Statement-2 true, Statement-2 is correct explanation for statement-1

2.  Statement-1 is true, statement-2 true is statement-2  not a correct explanation for statement-1

3.  Statement-1 is true, Statement-2  is false

4.  Statement-1 is false, Statement-2 is true

4

State1llent-1, is true, Statement-2 true, Statement-2 is correct explanation for statement-1

Explanation :
No Explanation available for this question

# If nN then 32n+7 is divisible by

1.  3

2.  8

3.  9

4.  11

4

8

Explanation :
No Explanation available for this question

# 3n2+5n3+7n is divisible by….for nN

1.  3

2.  5

3.  10

4.  15

4

15

Explanation :
No Explanation available for this question

# If nN then 4n-3n-1 is divisible by

1.  3

2.  8

3.  9

4.  11

4

9

Explanation :
No Explanation available for this question

# 102n+1+1 for all nN is divisible by

1.  2

2.  3

3.  7

4.  11

4

11

Explanation :
No Explanation available for this question

# If nεN then 49n+16n-1 is divisible by

1.  24

2.  64

3.  17

4.  676

4

64

Explanation :
No Explanation available for this question

1.  24

2.  64

3.  17

4.  676

4