If the curves x2/a2+y2/b2=1 and x2/l2-y2/m2=1 cut each other orthogonally, then

1.   a2+b2=l2+m2

2.  a2-b2=l2-m2

3.   a2-b2=l2+m2

4.  a2+b2=l2-m2

4

a2-b2=l2+m2

Explanation :
No Explanation available for this question

1.  0

2.   π/4

3.   π/3

4.   π/2

4

π/2

Explanation :
No Explanation available for this question

If the curves y2=6x, 9x2+by2=16, cut each other at right angle then the value of b is

1.   2

2.  4

3.   9/2

4.   none

4

9/2

Explanation :
No Explanation available for this question

Angle between the tangents to the curve y=x2-5x+6 at the points (2, 0) and (3, 0) is

1.  π/6

2.   π/4

3.  π/3

4.   π/2

4

π/2

Explanation :
No Explanation available for this question

The length of the tangent of the curve y=x3+1 at (1, 2) is

1.  √10

2.  2√10

3.   2√10/3

4.  6

4

2√10/3

Explanation :
No Explanation available for this question

The length of the tangent of the curve y2=x3/2a-x at(0, a)

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

The length of the tangent of the curve 2x2+3xy-2y2=8 at (2, 3) is

1.  √325/2

2.  3√325/17

3.  17/2

4.   18/17

4

3√325/17

Explanation :
No Explanation available for this question

The length of the tangent of the curves x=a cos 3θ, y= a sin3θ (a>0) is

1.  a sin2θ

2.   a sin2θ tanθ

3.  a sin2θ cosθ

4.  a sin4θ secθ

4

a sin2θ

Explanation :
No Explanation available for this question

The length of the normal of the curve y=x2+1 at (1, 2) is

1.  √5

2.   2√5

3.  1

4.  4

4

2√5

Explanation :
No Explanation available for this question

1.  y/c

2.  y2/c

3.   2y/c

4.  2y2/c

4