# Let C be the circle with centre (0, 0) and radius 3 units. The equation of the locus of the midpoints of the chords of the circle C that subtend an angle of 2π/3 at its centre is

1.  x2+y2=27/4

2.  x2+y2=9/4

3.  x2+y2=3/2

4.  x2+y2=1

4

x2+y2=9/4

Explanation :
No Explanation available for this question

# The equation of the chord of the circle x2+y2+16x+2y+10=0 parallel to the chord x-3y-15=0 and which is at the same distance from the centre is

1.  x-3y+25=0

2.  x-3y-25=0

3.  x-3y+15=0

4.  x-3y+5=0

4

x-3y-25=0

Explanation :
No Explanation available for this question

# The equation of the straight line meeting the circle x2+y2=a2 in two points equal distance d from a point (x1, y1) on the circumference is xx1+yy1=

2.  a2+1/2 d2

3.  a2-1/2 d2

4.  0

4

a2-1/2 d2

Explanation :
No Explanation available for this question

# If OA, OB are two equal chords of the circle x2+y2-2x+4y=0 perpendicular to each other and passing through the origin, then the equations of OA and OB are

1.  3x+y=0, x+3y=0

2.  3x-y=0, x-3y=0

3.  3x-y=0, x+3y=0

4.  3x+y=0, x-3y=0

4

3x-y=0, x+3y=0

Explanation :
No Explanation available for this question

# Let AB be the chord 4x-3y +5 = 0 with respect to the circle x2+y2-2x+4y-20=0. If C= (7, 1), then the area of the triangle ABC is

1.  15 sq. unit

2.  20 sq. unit

3.  24 sq. unit

4.  45 sq .unit

4

24 sq. unit

Explanation :
No Explanation available for this question

# The equation to the locus of the midpoints of chords of the circle x2+y2-8x+6y+20=0 which are parallel to 3x + 4y+5 = 0 is

1.  4x+13y+125=0

2.  4x-13y-125=0

3.  14x-23y-125=0

4.  x-y-5=0

4

4x-13y-125=0

Explanation :
No Explanation available for this question

# The locus of the midpoints of chords of the circle x2+y2=25 which touch the circle (x-2)2+(y-5)2=289 is

1.  (x2+y2-12x-5y)2=289(x2+y2)

2.  (x2+y2+12x+5y)2=87(x2+y2)

3.  (3x2-3y2-13x-3y)2=18(x2+y2)

4.  (x2+y2+15x+15y)2=89(x2-y2)

4

(x2+y2-12x-5y)2=289(x2+y2)

Explanation :
No Explanation available for this question

# The locus of midpoints of chords of the circle x2+y2=2r2 subtending a right angle at the centre of the circle is

1.  x2+y2=r2

2.  x2+y2=4r2

3.  x2+y2=8r2

4.  x2+y2=r2/2

4

x2+y2=r2

Explanation :
No Explanation available for this question

# The locus of the midpoint of the chords of the circle x2+y2=4 which subtends a right angle at the origin is

1.  x+y=2

2.  x2+y2=1

3.  x2+y2=2

4.  x+y=1

4

x2+y2=2

Explanation :
No Explanation available for this question

1.  x2+y2=l2

2.  x2+y2=r2-l2

3.  x2+y2=r2+l2

4.  x2+y2=4l2

4