# If Sin-1(tan π/4)- Sin-1(√3/x)-π/6=0, then xis a root of the equation

1.  x2-x-6=0

2.   x2+x-6=0

3.  x2-x-12=0

4.  x2+x-12=0

4

x2+x-6=0

Explanation :
No Explanation available for this question

# If θ= Sin-1 x+ Cos-1 x+ Tan-1 x, 0≤x≤1, then the smallest interval in which θ lies is given by

1.  π/4 ≤ θ ≤π/2

2.  - π/4 ≤ θ ≤0

3.  0≤ θ ≤ π/4

4.  π/2 ≤ θ ≤3π/4

4

0≤ θ ≤ π/4

Explanation :
No Explanation available for this question

# If Cos-1 x= Tan-1 x, then sin(Cos-1 x)=

1.  x

2.  x2

3.  1/x

4.  1/ x2

4

x2

Explanation :
No Explanation available for this question

# The domain of Cos-1(√2x) is

1.  [-1,1]

2.  [-1/2,1/2]

3.  [0,1/2]

4.   [1,1/2)

4

[0,1/2]

Explanation :
No Explanation available for this question

# The equation of the tangents drawn from (3,2)  to the parabola x2 = 4y are

1.  X + y + 1 = 0, x + 2y + 4 = 0

2.  X – y + 1 = 0,x – 2y + 4 = 0

3.  X + y – 1 = 0,x – 2y + 4 = 0

4.  X – y - 1 = 0,2x – y - 4 = 0

4

X – y - 1 = 0,2x – y - 4 = 0

Explanation :
No Explanation available for this question

# The domain of Sin-1[log2 (x2/2)] is

1.  [-2,-1]

2.  [1,2]

3.  [-2,-1]U[1,2]

4.  none

4

[-2,-1]U[1,2]

Explanation :
No Explanation available for this question

# The domain of Cos-1 (2/2+sinx) in [0,2π] is

1.  [0,π)

2.  [0, π/2]

3.  [-2,-1] U[1,2]

4.  none

4

[0,π)

Explanation :
No Explanation available for this question

# If the ends of a focal chord of the parabola y2 = 4ax are (x1y1) and (x2y2) then x1x2+y1y2

1.  A2

2.  -3a2

3.  5a2

4.  -5a2

4

-3a2

Explanation :
No Explanation available for this question

# The point of interection of the tangents at l1 and l2 to the parbola y2 = 12x is

1.  (2t1t2,2[t1-t2])

2.  (3t1,3[t1-t2])

3.  (3t1t2,3[t1 + t2])

4.  (2t1t2,2[t1 + t2])

4

(3t1t2,3[t1 + t2])

Explanation :
No Explanation available for this question

1.  [-π/3,π/3]

2.  [-π/2,π/2]

3.  [-π/3,π/4]

4.  none

4