# If y1,y2, are the oridinate of two points Pand Q on the parabola and y3 is the oridinate of the point of intersection of tangents at P and Q, then

1.  Y1,y2,y3 are in A.P

2.  Y1,y2,y3 are in A.P

3.  Y1,y2,y3 are in G.P

4.  Y1,y2,y3 are in G.P

4

Y1,y2,y3 are in A.P

Explanation :
No Explanation available for this question

# AB,AC are tangents to a parabola y2= 4ax. If l1,l2,l3 are the lengths of perpendiculars from A,B,C on any tangent to the parabola,then

1.  L1,l2 l3 are in G.P

2.  L1,l2 l3 are in G.P

3.  L1,l2,l3 are in A.P

4.  L1,l2,l3 are in A.P

4

L1,l2 l3 are in G.P

Explanation :
No Explanation available for this question

# A straight line which makes equal intercepts on positive  X and Y axes and which is at a distance 1 unit from the origin intersects the straight line  y =2x+3+√2 at (x0, y0). Then 2x0

1.  3+√2

2.  √2-1

3.  1

4.  0

4

√2-1

Explanation :
No Explanation available for this question

# The point of concurrence of the lines (3k+1) x-(2k+3)y+(9-k)=0 is

1.   (1, 1)

2.  (1, -1)

3.  (3, 4)

4.  (-2, 1)

4

(3, 4)

Explanation :
No Explanation available for this question

# The point of the concurrence of the lines (a+2b) x+(a-b)y+(a+5b)=0 is

1.   (-1, 2)

2.  (2, -1)

3.  (-2, 1)

4.  (1, -2)

4

(-2, 1)

Explanation :
No Explanation available for this question

# The point of concurrence of the lines (2a+5b) x+(3a-2b)y-5a-3b=0 is

1.   (1, 1)

2.  (1, -1)

3.  (2, 2)

4.  ( -2, 2)

4

(1, 1)

Explanation :
No Explanation available for this question

# If θ is the parameter, then the family of lines (2 cos θ +3 sin θ)x +(3 cos θ -5 sin θ)y-(5cos θ -2sin θ)=0 pass through the fixed point

1.  (0, 0)

2.   (1, 1)

3.  (0, 1)

4.  (1, 0)

4

(1, 1)

Explanation :
No Explanation available for this question

# If a,b,c are in  A.P, the lines  ax + by+c=0 pass through  the fixed point

1.  (1, 2)

2.  (-1, 2)

3.  (1, -2)

4.  (-1, -2)

4

(1, -2)

Explanation :
No Explanation available for this question

# If a, b, c are in A.P, the lines ax + by+c=0

1.  Pass through a fixed point

2.  Form an equilateral triangle

3.  Form a rhombus

4.  Form a square

4

Pass through a fixed point

Explanation :
No Explanation available for this question

1.  (3/4, 1/2)

2.  (-3/4, 1/2)

3.  (3/4, -1/2)

4.  (-3/4, -1/2)

4