# The period of (tan θ – 1/3 tan3θ) (1/3 – tan2 θ)-1 , where tan2θ ≠ 1/3 is :

1.  π/3

2.  2π/3

3.  π

4.  2π

4

&#960;/3

Explanation :
No Explanation available for this question

# If a sin2 θ + b cos2 θ = c, then tan2 θ is equal to :

1.  b - c  a - c

2.  c - b  a - c

3.  a - c  b - c

4.  a - c  c - b

4

<u>c - b&nbsp;</u> <br> a - c

Explanation :
No Explanation available for this question

# If cos(x - y), cos x, cos(x + y) are three distinct numbers which are in harmonic progression and cos x ≠ cos y, then 1 + cos y =

1.  cos2 x

2.  - cos2 x

3.  cos2 x - 1

4.  cos2 x - 2

4

cos<sup>2</sup> x

Explanation :
No Explanation available for this question

# The set of solutions of the equation (√3 - l) sin θ + (√3 + l) cos θ = 2 is :

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# If tan-1x + tan-1y + tan-1z = π/2, then 1 - xy - yz - zx =

1.  1

2.  0

3.  -1

4.  2

4

0

Explanation :
No Explanation available for this question

1.  1

2.  2

3.  1 / 2

4.  1 / 4

4

1 / 2

Explanation :
No Explanation available for this question

# If ∆ = a2 - (b - c)2, is the area of the triangle ABC, then tan A =

1.  1 / 16

2.  8 / 15

3.  3 / 4

4.  4 / 3

4

8 / 15

Explanation :
No Explanation available for this question

# In ∆ ABC, C = 90o . Then (a2 - b2) / (a2 + b2) is equal to :

1.  sin (A + B)

2.  sin (A - B)

3.  cos (A + B)

4.  cos (A - B)

4

sin (A - B)

Explanation :
No Explanation available for this question

# The sum of angles of elevation of the top of a tower from two points distant a and b from the base and in the same straight line with it is 90°. Then the height of the tower is :

1.  a2b

2.  ab2

3.  √ab

4.  ab

4

&#8730;ab

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4