# If α,β are solutions of acos x+b sin x=c then sin α+sin β=

1.  2ac/ c2-a2

2.  2ac/a2+b2

3.  c2-a2/b2+a2

4.  b/a

4

c2-a2/b2+a2

Explanation :
No Explanation available for this question

# The eccentricity of the  parabola y2 – 2x – 6y + 5 = 0 is

1.  0

2.  1

3.  1/2

4.  2

4

1

Explanation :
No Explanation available for this question

# If α,β are solutions of a cos 2θ+b sin 2θ=c, then tan α tan β=

1.  c+a/c-a

2.  2b/c+a

3.  c-a/c+a

4.  none

4

c-a/c+a

Explanation :
No Explanation available for this question

# If the vertex of the parabola y = x2 – 8x + c lies on x – axis, then the value of c is

1.  - 16

2.  -4

3.  4

4.  16

4

16

Explanation :
No Explanation available for this question

# If α, β are different values of θ satisfying the equations 5 cos θ+12 sin θ=11 then the value of sin (α+β)=

1.  119/120

2.   5/12

3.  120/169

4.  12/5

4

120/169

Explanation :
No Explanation available for this question

# If the coridinate of a point on the parabola y2 = 4x is twice the latus rectum, then the point is

1.  (16,8)

2.  (16, -8)

3.  (-16, 8)

4.  (-16, 8)

4

(16,8)

Explanation :
No Explanation available for this question

# If α, β are solutions of a tan θ+b sec θ=c then tan (α+β) =

1.  2ac/a2-c2

2.  2ac/c2-a2

3.  2ac/a2+c2

4.  none

4

2ac/a2-c2

Explanation :
No Explanation available for this question

# The general solution of sin2 θ sec θ+ √3tan θ=0 is

1.  θ=nπ+(-1)n+1π/3,θ=nπ, n ε Z

2.  θ=nπ, n ε Z

3.  θ=nπ+(-1)n+1π/3,n ε Z

4.  θ= nπ/2, n ε Z

4

θ=nπ, n ε Z

Explanation :
No Explanation available for this question

# For a parabola the distance between the focus and the directrix is equal to

1.  A

2.  4a

3.  Semilatus rectum

4.  None

4

Semilatus rectum

Explanation :
No Explanation available for this question

1.  X + 9 = 0

2.  Y + 9 = 0

3.  Y – 9 = 0

4.  X – 9 = 0

4