# If tan A,tan B are the roots of x2-px+q=0,the value of sin2(A+B) is

1.  p2/p2+(1-q)2

2.  p2/p2+q2

3.  q2/p2+(1-q)2

4.  p2/(p+q)2

4

p2/p2+(1-q)2

Explanation :
No Explanation available for this question

# If α,β are the roots of x2+ax-b=0 and γ,δ are the roots of x2+ax-b=0 then (α-γ)(β-γ)(α-δ)(β-δ)=

1.  b2

2.  2b2

3.  3b2

4.  4b2

4

4b2

Explanation :
No Explanation available for this question

# If α,β are the roots of x2+px-q=0 and γ,δ are the roots of x2+px+r=0 then (α-γ)(β-δ)(α-δ)(β-γ)=

1.  2p2

2.  2q2

3.  (q+r)2

4.  (q-r)2

4

(q+r)2

Explanation :
No Explanation available for this question

1.  1

2.  0

3.  2

4.  none

4

0

Explanation :
No Explanation available for this question

# If α,β are the roots of ax2+2bx+c=0 and α+δ,β+δ are the roots of Ax2+2Bx+C=0 then =

1.  a/A

2.  A/a

3.  (a/A)2

4.  (A/a)2

4

(a/A)2

Explanation :
No Explanation available for this question

# If α,β are the roots of ax2+bx+c=0;α+h,β+h are the roots of px2+qx+r=0;and D1,D2 the respective discriminants of these equations,then D1:D2=

1.  a2:p2

2.  b2:q2

3.  c2:r2

4.  none

4

a2:p2

Explanation :
No Explanation available for this question

1.  a2:p2

2.  b2:q2

3.  c2:r2

4.  none

4

b2:q2

Explanation :
No Explanation available for this question

# α,β are the roots of ax2+bx+c=0 and γ,δ are the roots of px2+qx+r=0;and D1,D2 be the respective discriminants of these equations.If α,β,γ and &de

1.  a2:p2

2.  a2:b2

3.  a2:c2

4.  a2:d2

4

a2:p2

Explanation :
No Explanation available for this question

# Let p and q be the roots of x2-2x+A=0 and let r and s be the roots of x2-18x+B=0.If p < q < r < s are in A.P then ordered pair(A,B)=

1.  (-3,77)

2.  (77,-3)

3.  (-3,-77)

4.  none of these

4

(-3,77)

Explanation :
No Explanation available for this question

1.  p=2,q=16

2.  p=2,q=32

3.  p=4,q=16

4.  p=4,q=32

4