# If (1, -2) is a limiting point of a coaxal system of which the circle x2+y2-x-2y-1=0 is a member, then the equation of a circle of the system passing through origin is

1.  6x2+6y2-7x-6y=0

2.  16x2+16y2-17x-16y=0

3.  x2+y2-7x-6y=0

4.  6x2+6y2+7x+6y=0

4

6x2+6y2-7x-6y=0

Explanation :
No Explanation available for this question

# The equation of the circle touching the line 3x-4y-15=0 and belonging to the coaxal system having limiting points (2, 0), (-2, 0) is

1.  x2+y2=4

2.  x2+y2+5x+4=0

3.  x2+y2+5x-4=0

4.  x2+y2-5x+4=0

4

x2+y2-5x+4=0

Explanation :
No Explanation available for this question

# The equation of the circle having a radius 2 and passing through the limiting points of the coaxal system x2+y2-6-2λ(x+y-4)=0 is

1.  x2+y2+4(-4±2√3)x+(-4±2√3)y+6=0

2.  x2+y2+4(-4+2√5)x+(14+2√5)y+6=0

3.  3x2+3y2+(-4+32√3)x+(-11+2√5)y+6=0

4.  3x2+3y2+(40+3√5)5x+(34+3√5)2y+26=0

4

x2+y2+4(-4±2√3)x+(-4±2√3)y+6=0

Explanation :
No Explanation available for this question

# The equation of the circle belonging to the coaxal system having limiting points (0, -3), (-2, -1) and orthogonal to the circle x2+y2+2x+6y+1=0 is

1.  x2+y2+8x+2y+1=0

2.  x2+y2-8x+2y+1=0

3.  x2+y2+8x-2y+1=0

4.  x2+y2-8x-2y+1=0

4

x2+y2+8x-2y+1=0

Explanation :
No Explanation available for this question

# P(-2, -1) and (0, -3) are the limiting points of a coaxal system of which C= x2+y2+5x+y+4=0 is a member. The circle S= x2+y2-4x-2y-15=0 is orthogonal to the circle C. The point where th

1.  (3, 6)

2.  (-3, 6)

3.  (-6, 3)

4.  (6, 3)

4

(6, 3)

Explanation :
No Explanation available for this question

# The conjugate system of the coaxal system x2+y2+2ax+2by+2λ(ax-by)=0, λ is a parameter, is

1.  x2+y2+µ(x/a+y/b+2)=0

2.  x2+y2+(2a-2aλ)x+(2b+2bλ)y=0

3.  x2+y2+(2a-2aλ)x+(2b-2bλ)y=0

4.  x2+y2+(2a+2aλ)x+(2b+2bλ)y=0

4

x2+y2+µ(x/a+y/b+2)=0

Explanation :
No Explanation available for this question

# The coaxal system which is orthogonal to the coaxal system x2+y2+2x-3y-1+λ(x-4y+1)=0, λ is a parameter is

1.  5x2+5y2-14x-6y+µ(8x+2y+5)=0

2.  15x2+15y2-44x-56y+µ(18x+22y+15)=0

3.  5x2+5y2-14x-6y-µ(8x-2y-5)=0

4.  15x2+35y2-44x-56y-µ(8x+2y+5)=0

4

5x2+5y2-14x-6y+µ(8x+2y+5)=0

Explanation :
No Explanation available for this question

# The system of circles orthogonal to x2+y2+2x+4y+7=0 is a member, then the equation of the orthogonal system is

1.  (x2+y2+x+3y)+λ(2x+3y+3)=0

2.  3(x2+y2+x+3y)+λ(x+y+3)=0

3.  3(x2+y2-x-3y)+λ(x-y-3)=0

4.  3(x2+y2+2x+3y)+3λ(2x+3y+63)=0

4

3(x2+y2+2x+3y)+3λ(2x+3y+63)=0

Explanation :
No Explanation available for this question

# If the origin is the limiting point of a system of coaxal circles of which x2+y2+2gx+2fy+c=0 is a member, then the equation of the circle of the orthogonal system is

1.  (x2+y2)+(g+λf)+4c(3x+λ)=0

2.  (x2+y2)+(g+λf)+c(x+λy)=0

3.  (3x2+3y2)+(2g-4λf)+c(x-λy)=0

4.  (x2+y2)+(g-λf)+c(x-λy)=0

4

(x2+y2)+(g+λf)+c(x+λy)=0

Explanation :
No Explanation available for this question

# If (1,2), (4, 3) are the limiting points of a coaxal system , then the equation of the circle in its conjugate system having minimum area is

1.  x2+y2-2x-4y+5=0

2.  x2+y2-8x-6y+25=0

3.  x2+y2-5x-5y+10=0

4.  x2+y2+5x+5y-10=0

4