# The equation of the circle cutting orthogonally the circles x2+y2-4x+2y-11=0, x2+y2+6x-4y-13=0 and which has its centre on  the line 2x+y+4=0 is

1.  x2+y2+2x+4y+11=0

2.  x2+y2-2x+4y+11=0

3.  x2+y2+2x-4y+11=0

4.  x2+y2-2x-4y+11=0

4

x2+y2+2x+4y+11=0

Explanation :
No Explanation available for this question

# The equation of the circle cutting orthogonally circles x2+y2+2x+8=0, x2+y2-8x+8=0 and which touches the line x-y+4=0 is

1.  x2+y2+4y=0

2.  x2+y2+8y+8=0

3.  x2+y2-16y-8=0

4.  x2+y2+16y-16=0

4

x2+y2-16y-8=0

Explanation :
No Explanation available for this question

# The equation of the circle cutting orthogonally circles x2+y2-4x+3y-1=0 and passing through the points (-2, 5), (0, 0) is

1.  2x2+2y2-11x-16y=0

2.  x2+y2-4x-4y=0

3.  x2+y2-16x-8=0

4.  4x2+4y2-15x-4=0

4

2x2+2y2-11x-16y=0

Explanation :
No Explanation available for this question

# The condition that the two circles which passes through the points (0, a), (0, -a) and touch the line y=mx+c will cut orthogonally is

1.  c2=a2(1+m2)

2.  c2=a2(2+m2)

3.  c2=a2(3+m2)

4.  c2=a2(4+m2)

4

c2=a2(2+m2)

Explanation :
No Explanation available for this question

# The locus of the centre of the circle which cuts the circles x2+y2+4x-6y+9=0 and x2+y2-4x+6y+4=0 orthogonally is

1.  8x+12y-5=0

2.  8x+12y+5=0

3.  4x-6y+5=0

4.  none

4

8x+12y+5=0

Explanation :
No Explanation available for this question

# (1, 2) is a point on the circle x2+y2+2x-6y+5=0 which is orthogonal to x2+y2=5. The  conjugate  point  of (1, 2) w. r. to the circle x2+y2 =5 and wh

1.  (7, -1)

2.  (9, -2)

3.  (-3, 4)

4.  (0, 5)

4

(-3, 4)

Explanation :
No Explanation available for this question

# The point  (3,  1) is a point on a circle C with centre  (2,  3) and  C is  orthogonal  to x2+y2=8. The conjugate  point  of (3,  1) w.r. to  x2

1.  (5, 1)

2.  (5, 4)

3.  (1, 5)

4.  (0, +2)

4

(1, 5)

Explanation :
No Explanation available for this question

# The points A(2, 3) and B(-7, -12) are conjugate  points  w.r.  to the  circle x2+y2-6x- 8y- 1=0. The centre of the circle passing  through A and B and orthogonal to the given circle

1.  (-5, -9)

2.  (-9, -15)

3.  (-5/2, -9/2)

4.  none

4

(-5/2, -9/2)

Explanation :
No Explanation available for this question

# The  locus of  the centres of all  circles which touch the  line x =2a and cut  the  circle x2+y2 = a2  orthogonally is

1.  y2-4ax-5a2=0

2.  y2+4ax+5a2=0

3.  2=4ax+5a2

4.  y2=4ax-5a2

4

y2-4ax-5a2=0

Explanation :
No Explanation available for this question

# If a circle passes through the point (a, b) and cuts the circle x2+y2=k2 orthogonally, the equation of the locus of its centre is

1.  2ax+2by=a2+b2+k2

2.  ax+by=a2+b2+k2

3.  x2+y2+2ax+2byk2=0

4.  x2+y2-2ax+2byk2=0

4