# The solution of differential equation dy/dx  = y/x + φ(y/x) / φ'(y/x) is

1.  xφ(y/x) = k

2.  φ(y/x) = kx

3.  yφ(y/x) = k

4.  φ(y/x) = ky

4

&#966;(y/x) = kx

Explanation :
No Explanation available for this question

# If y = y(x) is the solution of the differential equation (2+sin x) /  (y+1) (dy/dx)  + cos x = 0 with y(0) =1 ,  then y(π/2) =

1.  1/3

2.  2/3

3.  1

4.  4/3

4

1/3

Explanation :
No Explanation available for this question

# If f : [2 , ∞) ---->  B defined by f(x) = x2 -4x +5 is a bijection then B =

1.  [0 , ∞)

2.  [1 , ∞)

3.  [4 , ∞)

4.  [5 , ∞)

4

[1 , &#8734;)

Explanation :
No Explanation available for this question

# If f: IR ----->  IR is defined by  f(x) = [x/5] for x Є IR , where [y] denotes the greatest integer not exceeding y, then { f(x) : |x| < 71 }

1.  { -14 , -13...........................,0,..................13,14 }

2.  { -14 , -13...........................,0,..................14 , 15 }

3.  {-15, -14 ...........................,0,..................14 , 15

4.  {-15,-14,................0................,13 , 14}

4

{-15,-14,................0................,13 , 14}

Explanation :
No Explanation available for this question

# If a,b and n are natural numbers then a2n-1 + b2n-1 is divisible by:

1.  a+b

2.  a-b

3.  a3 + b3

4.  a2 + b2

4

a+b

Explanation :
No Explanation available for this question

# A bag contains n white and n black balls. Pairs of balls are drawn at random without replacement successively , until the bag is empty , if the number of ways in which each pair consists of one white and one black ball is 14,400

1.  6

2.  5

3.  4

4.  3

4

5

Explanation :
No Explanation available for this question

# The number of five digit numbers divisible by  5 that can be formed using the numbers 0,1,2,3,4,5 without repetition is

1.  240

2.  216

3.  120

4.  96

4

216

Explanation :
No Explanation available for this question

# 15P8 = A + 8 . 14P7 ==> A =

1.  14P6

2.  14P8

3.  15P7

4.  16P9

4

<sup>14</sup>P<sub>8</sub>

Explanation :
No Explanation available for this question

# If (n-1)C3 + (n-1)C4 > nC3 , then the minimum value of n is

1.  5

2.  6

3.  7

4.  8

4

8

Explanation :
No Explanation available for this question

1.  14

2.  15

3.  18

4.  21

4