# 6 identical coins are arranged on a row. The number of arrangements in which 4 are heads and 2 are tails is

1.  15

2.  120

3.  17!

4.  150

4

15

Explanation :
No Explanation available for this question

# he locus of the point (2secα cosβ, 2secα sinβ, 2tanα) is

1.  x2+y2-z2=4

2.  x2+y2+z2=4

3.  x2+y2-z2=r2

4.  x2-y2+z2=r2

4

x2+y2-z2=4

Explanation :
No Explanation available for this question

# The  coordinates of the point (3,-7,5) in the new system when the origin is shifted to (-1,-1,-1) is

1.  (4,-6,6)

2.  (4,6,6)

3.  (6,6,6)

4.  (4,4,4)

4

(4,-6,6)

Explanation :
No Explanation available for this question

# The point to which the axes should be translated to eliminate first degree terms in the equation 2x2-2y2+z2-4x+8y+2z-5=0 is

1.  (1,2,1)

2.  (1,2,-1)

3.  (-1,2,1)

4.  (1,-2,1)

4

(1,2,1)

Explanation :
No Explanation available for this question

# The points (-2,3,5) , (1,2,3), (7,0,-1) are collinear: II: The points (2,-1,1) ,(1,-3,-5), (3,-4,-4) form an equilateral triangle

1.  only I is true

2.  only II is true

3.  both I and II are true

4.  neither I and II are true

4

only I is true

Explanation :
No Explanation available for this question

# I: The ratio in which (2,3,4) divides the line segment joining(3,-2,2), (6,-17,-4) is 1:4 externally II: The ratio in which xy-plane divides the l

1.  only I is true

2.  only II is true

3.  both I and II are true

4.  neighter I and II are true

4

both I and II are true

Explanation :
No Explanation available for this question

# A(3,4,5), B(2,3,1), C(-1,6,1) are the vertices of a triangle then I: The circumcentre of triangle ABC is (1,5,3)

1.  only T is true

2.  only II is true

3.  both I and II are true

4.  neighter I and II are true

4

both I and II are true

Explanation :
No Explanation available for this question

# The descending order of the distances between the points A. (0,0,0), (cos,sin,1)

1.  A,B,C,D

2.  C,D,B,A

3.  C,B,D,A

4.  B,C,D,A

4

C,D,B,A

Explanation :
No Explanation available for this question

# The number of ways that 12 prizes can be divided among 4 students so that each may have 3 prizes is

1.  15,400

2.  15,300

3.  15,151

4.  369600

4

369600

Explanation :
No Explanation available for this question

1.  p,q,r

2.  q,p,r

3.  r,p,q

4.  r,q,p

4