# If the sum of odd terms and the sum of even terms in the expansion of (x+a)n are p and q respectively then p2+q2=

1.  (x2+a2)n

2.  (x2-a2)n

3.  1/2[(x+a)2n+(x-a)2n]

4.  1/2[(x+a)2n-(x-a)2n]

4

1/2[(x+a)2n+(x-a)2n]

Explanation :
No Explanation available for this question

# The sum of numbers formed by talking all the digits 2,4,6,8 is

1.  123320

2.  13220

3.  133320

4.  None of these

4

133320

Explanation :
No Explanation available for this question

# If the sum of odd terms and the sum of even terms in the expansion of (x+a)n are p and q, then 4pq=

1.  (x+a)2m-(x-a)2n

2.  (x2-a2)n+(x+a)2n

3.  (x2-a2)n+(x-a)2n

4.  (x2+a2)n+(x-a)2n

4

(x+a)2m-(x-a)2n

Explanation :
No Explanation available for this question

# The sum of numbers formed by talking all the digits {1,3,5,7,9} is

1.  56,67,850

2.  63,65,458

3.  66,66,600

4.  76,61,523

4

66,66,600

Explanation :
No Explanation available for this question

# The sum of all possible numbers greater than 2000 formed by using the digits 2,3,4,5 is

1.  93324

2.  96324

3.  92324

4.  36680

4

93324

Explanation :
No Explanation available for this question

# The sum of all 4 digited that can be formed, using the digits 1,2,4,5,6 without repetition is

1.  479952

2.  497952

3.  545958

4.  547598

4

479952

Explanation :
No Explanation available for this question

# The sum of all four digited that can be formed, using  the digits 0,2,4,7,8 without repetition is

1.  479952

2.  497952

3.  545958

4.  547598

4

545958

Explanation :
No Explanation available for this question

# The coefficient of xp in the expansion of (x2+1/x)2n is

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# If a1,a2, a3, a4 are the coefficients of 2nd, 3rd, 4th and 5th terms respectively in (1+x)n then a1/a1+a

1.  a2/a2+a3

2.  2a2/a2+a3

3.  a3/a2+a3

4.  2a3/a2+a3

4

2a2/a2+a3

Explanation :
No Explanation available for this question

1.  1,03,124

2.  93,324

3.  78,456

4.  1,15,576

4