# The locus  of the  midpoint its of chords of x2/a2-y2/b2=1 which pass through the focus (ae, 0) is

1.  x2/a2-y2/b2 +xe/a=0

2.  x2/a2+y2/b2 +xe/a=0

3.  x2/a2-y2/b2 -xe/a=0

4.  x2/a2+y2/b2 -xe/a=0

4

x2/a2-y2/b2 -xe/a=0

Explanation :
No Explanation available for this question

# The locus  of the  midpoint its of chords of the hyperbola x2/a2-y2/b2=1 which pass through the positive end of the transverse axis is

1.  x2/a2-y2/b2 x/b=0

2.  x2/a2-y2/b2 -x/a=0

3.  x2/a2-y2/b2 +x/a=0

4.  x2/a2+y2/b2 +x/a=0

4

x2/a2-y2/b2 +x/a=0

Explanation :
No Explanation available for this question

# A tangent at hyperbola  x2/a2-y2/b2=1 cuts the ellipse x2/a2-y2/b2=1 in P and Q. The locus of midpoint of PQ is

1.  (x2/a2+y2/b2)2= x2/a2-y2/b2

2.  (x2/a2-y2/b2)2= x2/a2+y2/b2

3.  (x2/a2+y2/b2)2= x2/a2+y2/b2

4.  (x2/a2-y2/b2)2= x2/a2-y2/b2

4

(x2/a2+y2/b2)2= x2/a2-y2/b2

Explanation :
No Explanation available for this question

# From points on the circle x2+y2=a2, tangents are drawn to the hyperbola x2-y2=a2. The locus of the midpoint of chords of contact is

1.  (x2+y2)2=a2(x2-y2)

2.  (x2+y2)2=a2(x2+y2)

3.  a2 (x2+y2)2= (x2-y2)

4.  a2 (x2-y2)2= (x2+y2)

4

(x2+y2)2=a2(x2+y2)

Explanation :
No Explanation available for this question

# The locus  of midpoints  of  chords of the  hyperbola x2/a2-y2/b2=1 whose poles lie on the auxiliary circle is

1.  (x2/a2+y2/b2)2=x2+y2/a2

2.  (x2/a2-y2/b2)2=x2+y2/a2

3.  (x2/a2-y2/b2)2=x2-y2/a2

4.  (x2/a2-y2/b2)2=x2+y2/a2

4

(x2/a2-y2/b2)2=x2+y2/a2

Explanation :
No Explanation available for this question

# In ΔABC, if r1,r2,r3 are in H.P, then a, b, c are in

1.  A.P

2.  G.P

3.  H.P

4.  none

4

A.P

Explanation :
No Explanation available for this question

# In ΔABC, if (a-b) (s-c) = (b-c) (s-a), then r1,r2,r3 are in

1.  A.P

2.  G.P

3.  H.P

4.  none

4

A.P

Explanation :
No Explanation available for this question

# In ΔABC, if r-=1, R=4, =8, then ab+bc+ca =

1.  73

2.  81

3.  84

4.  78

4

81

Explanation :
No Explanation available for this question

# Tangents are drawn  from  the Point (-2, -1) to the hyperbola 2x2-3y2=6. Their equations are

1.  3x-y+5=0, x-y+1=0

2.  3x+y+5=0, x+y+1=0

3.  3x-y-5=0, x-y-1=0

4.  3x+y-5=0, x+y-1=0

4

3x-y+5=0, x-y+1=0

Explanation :
No Explanation available for this question

1.  2

2.  4

3.  3

4.  -1

4