# In ΔABC, if (r1-r2) (r3- r2) =2r1r3, then triangle is

1.  equilateral

2.  right angled

3.  isosceles

4.  none

4

right angled

Explanation :
No Explanation available for this question

# The locus of poles of tangents to the hyperbola x2-y2=a2 w. r. t the parabola y2=4ax is

1.  x2+4y2=4a2

2.  x2-4y2=4a2

3.  4x2+y2=4a2

4.  4x2-y2=4a2

4

4x2+y2=4a2

Explanation :
No Explanation available for this question

# The locus of poles w. r. t the parabola y2=4ax of tangents to the hyperbola 4x2-3y2=a2 is

1.  12x2-y2=3a2

2.  12x2-3y2=a2

3.  4x2+y2=3a2

4.  12x2+3y2=a2

4

4x2+y2=3a2

Explanation :
No Explanation available for this question

# The locus of poles w. r. t the parabola x2/a2-y2/b2=1 of tangents to its auxiliary circle is

1.  x2/a4+y2/b4=1/a2

2.  x2/a4-y2/b4=1/a2

3.  x2/a2+y2/b2=1/a2

4.   x/a4-y/b4=1/a2

4

x2/a4+y2/b4=1/a2

Explanation :
No Explanation available for this question

# The locus of poles of tangents to the circle x2+y2=a2-b2 w. r. t the hyperbola x2/a2-y2/b2=1is

1.  x2/a4+y2/b4=1/a2-b2

2.  x2/a4-y2/b4=1/a2-b2

3.  x2/a4+y2/b4=1/a2+b2

4.  x2/a4-y2/b4=1/a2+b2

4

x2/a4+y2/b4=1/a2-b2

Explanation :
No Explanation available for this question

# If f(x)=x for x0 then

1.  -1

2.  0

3.  1

4.  2

4

0

Explanation :
No Explanation available for this question

# The locus of poles of tangents w. r. t the hyperbola x2/a2-y2/b2=1 which touch the parabola y2=4ax is

1.  a3y3+b4x=0

2.  a2y2+b2x=0

3.  a3y2+b4x=0

4.  a3y2-b4x=0

4

a3y2+b4x=0

Explanation :
No Explanation available for this question

# The locus of poles of the lines with respect to the hyperbola  x2/a2-y2/b2=1 which touch the ellipse x2/α2+y2/β2=1is

1.  α2 x2/a4+ β2 y2/b4=1

2.  α2 x2/a4-β2 y2/b4=1

3.  α2 x2/a4+ α2 y2/b4=1

4.  α2 x2/a2+ β2 y2/b2=1

4

α2 x2/a4+ β2 y2/b4=1

Explanation :
No Explanation available for this question

# The locus of poles of  chords of the parabola  y2=4px which touch the hyperbola x2/a2-y2/b2=1is

1.  4p2x2+b2y2=4p2a2

2.  4p2x2-b2y2=4p2a2

3.  4p2x2+b2y2=4p2b2

4.  4q2x2-b2y2=4q2a2

4

4p2x2+b2y2=4p2a2

Explanation :
No Explanation available for this question

# The locus of poles of  chords of the hyperbola x2/a2-y2/b2=1 which subtend a right angle at the centre is

1.  x2/a4-y2/b4=1/a2+1/b2

2.  x2/a4-y2/b4=1/a2-1/b2

3.  x2/a4-y2/b4=1/a2+1/b2

4.  x2/a4-y2/b4=1/a2-1/b2

4