1.  1

2.  2

3.  -1

4.  -2

4

2

Explanation :
No Explanation available for this question

1.  900

2.  600

3.  450

4.  300

4

600

Explanation :
No Explanation available for this question

# The line x = π/4 divides the area of the region bounded by y =sin x, y = cos x and x-axis ( 0 < x < π/2 )  into two regions of areas A1 and A2

1.  4 : 1

2.  3 : 1

3.  2 : 1

4.  1 : 1

4

1 : 1

Explanation :
No Explanation available for this question

# The velocity of a particle which starts from rest is given by the following table: t(in seconds)

1.  113

2.  226

3.  143

4.  246

4

226

Explanation :
No Explanation available for this question

# The solution of the differential equation dy/dx = sin (x + y) tan (x + y) - 1 is

1.  cosec (x+y) + tan (x+y) = x+c

2.  x + cosec (x+y) = c

3.  x + tan (x+y) = c

4.  x + sec (x+y) = c

4

x + cosec (x+y) = c

Explanation :
No Explanation available for this question

# The differential equation of the family y = aex + bx ex + cx2 ex of curves, where a, b, c are arbitrary constants, is

1.  y'" + 3y" + 3y' + y = 0

2.  y'" + 3y" - 3y' - y = 0

3.  y'" - 3y" - 3y' + y = 0

4.  y'" - 3y" + 3y' - y = 0

4

y\'\" - 3y\" + 3y\' - y = 0<br>

Explanation :
No Explanation available for this question

# Observe the following statements

1.  Both I and II are true.

2.  I is true, II is false.

3.  I is false, II is true.

4.  Both I and II are false.

4

I is true, II is false.

Explanation :
No Explanation available for this question

# If f : [2 , 3 ] →IR is defined by f(x) = x3 +3x-2 , then the range f(x) is contained in the interval

1.  [1 , 12]

2.  [12 , 34]

3.  [35 , 50]

4.  [-12  , 12 ]

4

[12 , 34]

Explanation :
No Explanation available for this question

# In triangle, if r1 = 2r2 = 3r3, then a/b + b/c + c/a is equal :

1.  75/60

2.  155/60

3.  176/60

4.  191/60

4

191/60

Explanation :
No Explanation available for this question

# From the top of a hill h metres high the angles of depressions of the top and the bottom of a pillar are α and β respectively. The height (in melius) of the pillar is :

1.  (h(tan β – tan α))/tan β

2.  (h(tan α – tan β))/tan α

3.  (h(tan β + tan α))/tan β

4.  (h(tan β + tan α))/tan α

4