# A) if the angle of the elevation of the top of a tower from a point 60m from its foot is 300 then the height of the tower is h1

1.  h2 ,h3, h1

2.  h3, h2, h1

3.  h1, h2, h3

4.  h3, h1, h1

4

h2 ,h3, h1

Explanation :
No Explanation available for this question

# If the line lx+my=1 is a normal to the ellipse x2/a2+y2/b2=1 then a2/l2-b2/m2=1

1.  a2-b2

2.  a2+b2

3.  (a2+b2)2

4.  (a2-b2)2

4

(a2+b2)2

Explanation :
No Explanation available for this question

1.  0

2.  1

3.

4.

4

Explanation :
No Explanation available for this question

# P(θ) and D(θ+π/2) are two points on the ellipse x2/a2+y2/b2=1. The locus of point of intersection of tangents at P and D to the ellipse is

1.  x2/a2+y2/b2=a

2.  x2/a2+y2/b2=b

3.  x2/a2+y2/b2=2

4.  x2/a2+y2/b2=ab

4

x2/a2+y2/b2=2

Explanation :
No Explanation available for this question

# A) The shadow of a tower standing on level plane is found to be 60 mt longer when the sun’s altitude is 300 then when it is 450. The height of the tower is h1.

1.  h2, h3, h1

2.  h3, h2, h1

3.  h1, h2, h3

4.  h2, h1, h3

4

h2, h1, h3

Explanation :
No Explanation available for this question

# The condition that the line x cos α +y sin α=p may be a normal to the ellipse x2/a2+y2/b2=1

1.  a2/cos2α+x2/sin2 α=( a2+b2)2/p2

2.  a2/cos2α+x2/sin2 α=( a2-b2)2/p2

3.  a2/cos2α+x2/sin2 α=( a2+b2)2/p2

4.  a2/cos2α-x2/sin2 α=( a2-b2)2/p2

4

a2/cos2α+x2/sin2 α=( a2-b2)2/p2

Explanation :
No Explanation available for this question

# If the normal at θ on the ellipse 5x2+14y2=70 cuts the curve again at a point 2θ, then cos θ=

1.  2/3

2.  -2/3

3.  1/3

4.  -1/3

4

-2/3

Explanation :
No Explanation available for this question

# If the normal at P(θ) on the ellipse x2/a2+y2/b2=1 with focus s, meers the major axis in G then SG=

1.  Sp

2.  eSP

3.  SP/e

4.  e

4

eSP

Explanation :
No Explanation available for this question

# A) A flagstaff stands upon the top of a building. At a distance of 40 mt, the angles of elevation of the tops of the flag staff and building are 600 and 300. The length of the flag staff is h1

1.  h2, h3, h1

2.  h3, h2, h1

3.  h1, h2, h3

4.  h2, h1, h3

4

h3, h2, h1

Explanation :
No Explanation available for this question

1.  0

2.  1

3.  2

4.  1/2

4