# At the foot of a mountain the angle of elevation of a summit is found to be 450. After ascending 1 km towards the mountain up, a slope of inclination 300, the angle of elevation is found to be 600

1.  400(√2+2) mt

2.  500(√3+1) mt

3.  200(√2+1) mt

4.  100(√6+√2) mt

4

500(√3+1) mt

Explanation :
No Explanation available for this question

# The locus of the middle point of chords of the ellipse x2/a2+y2/b2=1   whose pole lies on the auxiliary circle is

1.  (x2/a2+y2/b2)2= (x2+y2)/a2

2.  (x2/a2+y2/b2)2= (x2-y2)/a2

3.  (x2/a2-y2/b2)2= (x2+y2)/a2

4.  (x2/a2-y2/b2)2= (x2-y2)/a2

4

(x2/a2+y2/b2)2= (x2+y2)/a2

Explanation :
No Explanation available for this question

# The locus of the middle point of chords of the ellipse x2/a2+y2/b2=1   which touch the circle on the join of the foci as diameter is

1.  (x2/a2+y2/b2)2=a2 e2  (x2/a4+y2/b4)

2.  (x2/a2+y2/b2)2=a2 e2  (x2/a4-y2/b4)

3.  (x2/a2-y2/b2)2=a2 e2  (x2/a4+y2/b4)

4.  (x2/a2-y2/b2)2=a2 e2  (x2/a4-y2/b4)

4

(x2/a2+y2/b2)2=a2 e2  (x2/a4+y2/b4)

Explanation :
No Explanation available for this question

# A man observes a tower AB of height h from a point P on the ground. He moves a distance ‘d’ towards the foot of the tower and finds that the angle of elevation is doubled. He further moves a distance 3d/4 in the same

1.  32d2

2.  35d2

3.  40d2

4.  42d2

4

35d2

Explanation :
No Explanation available for this question

# The locus of the middle point of chords of the ellipse x2/a2+y2/b2=1   which are at a constant distance d from the centre of the ellipse is

1.  (x2/a2+y2/b2)2=d2  (x2/a4+y2/b4)

2.  (x2/a2+y2/b2)2= (x2/a4+y2/b4)

3.  (x2/a2+y2/b2)2=2d2 (x2/a4+y2/b4)

4.  (x2/a2+y2/b2)2=d2 (x2/a4-y2/b4)

4

(x2/a2+y2/b2)2=d2  (x2/a4+y2/b4)

Explanation :
No Explanation available for this question

# The equation of the pair of tangents drawn from (2, -2) to the ellipse 3x2+2y2=6 is

1.  x2+8xy+2y2+12x-8y-20=0

2.  3x2-4xy-y2+2x+8y-9=0

3.  4x2+24xy+24y2+8x-6y-11=0

4.  7x2+24xy-5y2-22x+8y-39=0

4

x2+8xy+2y2+12x-8y-20=0

Explanation :
No Explanation available for this question

# A man observes that angle of elevation of the top of a tower from a point P on the ground is θ. He moves a certain distance towards the foot of the tower and finds that the angle of elevation of the top has doubled. He furt

1.  sinθ=√5/12

2.  cosθ= √5/12

3.  sinθ= 3/4

4.  cosθ= 3/8

4

sinθ=√5/12

Explanation :
No Explanation available for this question

# The parametric representation (2+t2, 2t+1) represents

1.  A parabola with focus at (2, 1)

2.  A parabola with vertex at (2, 1)

3.  an ellipse with centre at (2, 1)

4.   none

4

A parabola with vertex at (2, 1)

Explanation :
No Explanation available for this question

# The points on the ellipse x2/25+y2/9=1 whose angles differ by a right angle are

1.  (5 cos θ, 3 sin θ), (5 sin θ, 3 cos θ)

2.  (5 cos θ, 3 sin θ), (-5 sin θ, 3 cos θ)

3.  (5 cos θ, -3 sin θ), (5 sin θ, 3 cos θ)

4.  (5 cos θ, -3 sin θ), (-5 sin θ, 3 cos θ)

4

(5 cos θ, 3 sin θ), (-5 sin θ, 3 cos θ)

Explanation :
No Explanation available for this question

# The points on the ellipse 2x2+3y2=6 whose eccentric  angles differ by two right angles is

1.  (√3 cos θ, √2 sin θ), (-√3 cos θ, -√2 sin θ)

2.  (√3 cos θ, -√2 sin θ), (√3 cos θ, √2 sin θ)

3.  (√3 cos θ, √2 sin θ), (√3 cos θ, -√2 sin θ)

4.  (√3 cos θ, √2 sin θ), (-√3 cos θ, √2 sin θ)

4