# A ladder rests against a wall at an angle ‘α’ to the horizontal. Its foot is pulled away through a distance‘a’ so that it slides adistance'd’down the wall, finally making an angle β with t

1.  a/b

2.  b/a

3.  ab

4.  a+b

4

a/b

Explanation :
No Explanation available for this question

# The locus of poles of chords of the ellipse x2/a2+y2/b2=1 which touches the parabola y2=4px is

1.  pa2y2+b4x=0

2.  pa2y2+b2x2=0

3.  pb2y2+a4x=0

4.  pb2y+b4x2=0

4

pa2y2+b4x=0

Explanation :
No Explanation available for this question

# The locus of the poles w.r.t the ellipse x2/a2+y2/b2=1 of tangents to its auxiliary circle is

1.  x2/a2+y2/b2=1/a2

2.  x2/a2+y2/b2=1/b2

3.  x2/a4+y2/b4=1/a2

4.  x2/a4+y2/b4=1/b2

4

x2/a4+y2/b4=1/a2

Explanation :
No Explanation available for this question

# A tower ABCD stands on a level ground with foot A. At a point P on the ground, the portion AB, AC and AD subtends angles α ,β and γ respectively. If AB=a, AC=b, AD=c, AP= x and α+β+γ=1800

1.  abc

2.  a+b+c

3.  a+b-c

4.  a-b-c

4

abc

Explanation :
No Explanation available for this question

# The locus of the poles of chords of  the ellipse x2/a2+y2/b2=1 which touch The locus of the poles w.r.t the ellipse x2/α2+y2/β2

1.  α2 x2/a2+ β2 y2/b2=1

2.  α2 x2/a4+ β2 y2/b4=1

3.  α2 x2/b4+ β2 y2/a4=1

4.  α2 x2/b2+ β2 y2/a2=1

4

α2 x2/a4+ β2 y2/b4=1

Explanation :
No Explanation available for this question

# The locus of the poles of chords of  the ellipse x2/a2+y2/b2=1 which substend a right angle at the center of the ellipse is

1.  x2/a4+y2/b4=1/a2+1/b2

2.  x2/a4+y2/b4=1/a2-1/b2

3.  x2/a4-y2/b4=1/a2+1/b2

4.  x2/a4-y2/b4=1/a2-1/b2

4

x2/a4+y2/b4=1/a2+1/b2

Explanation :
No Explanation available for this question

# The height of a hill is 3300 mt. From a point P on the ground the angle of elevation of the top of elevation of the top of the hill is 600. A balloon is moving with constant speed vertically upwards from P. After 5 min

1.  15.3 kmph

2.  24.5 kmph

3.  26.4 kmph

4.  32.3 kmph

4

32.3 kmph

Explanation :
No Explanation available for this question

# The locus of a point P for which the chord of contact of  x2/a2+y2/b2=1 touch the circle x2+y2=r2

1.  x2/a4+y2/b4=1/r4

2.  x2/a4+y2/b4=1/r2

3.  y2/a4+x2/b4=1/r2

4.  x2/a4+y2/b4=-1/r2

4

x2/a4+y2/b4=1/r2

Explanation :
No Explanation available for this question

# If the variable line l1(x-a)+y=0 and l2(x+a)+y=0 are conjugate lines w. r. to the ellipse x2/a2+y2/b2=1. Then the locus of their point of intersection is

1.  x2/a2+y2/b2=1

2.  x2/a2+2y2/b2=1

3.  x2/a2+y2/b2=2

4.  none

4

x2/a2+2y2/b2=1

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4