1.   250 Cos2x

2.  - 250 Cos2x

3.  - 250 Sin2x

4.  250 Sin2x

4

- 250 Cos2x

Explanation :
No Explanation available for this question

1.  8

2.  6

3.  -4

4.  1

4

8

Explanation :
No Explanation available for this question

# If the curve y=x2 + bx + c touches the line y=x at the point (1, 1), then the set of values of ‘x’ for which the curve has a negative gradient is

1.   (1/2, x)

2.  (-1/2, x)

3.  (x, ½)

4.  (-x, -1/2)

4

(x, ½)

Explanation :
No Explanation available for this question

1.   3√5, 5√5

2.  5√3, 3√3

3.  5√2, 3√2

4.  5, 3

4

5√2, 3√2

Explanation :
No Explanation available for this question

1.   a = 0

2.  a = -1

3.  a = 2

4.  a = 3

4

a = 3

Explanation :
No Explanation available for this question

# An ellipse with the eccentricity e=1/2 has a focus at (0, 0) and the corresponding directrix is x+6=0.  The equation of the ellipse is

1.  3x2+4y2+12x-36=0

2.  3x2+4y2-12x+36=0

3.  3x2+4y2-12x-36=0

4.  none

4

3x2+4y2-12x-36=0

Explanation :
No Explanation available for this question

# The amount of the ellipse whose focus is (3, -2), eccentricity 3/4 and difference 2x-y+3=0 is

1.  14x2+33xy+ 17y2-255x+74y+159=0

2.  44x2+36xy+71y2-588x+374y+959=0

3.  4x2+56xy+271y2-188x+274y+359=0

4.  44x2-36xy-71y2-588x-374y-959=0

4

44x2+36xy+71y2-588x+374y+959=0

Explanation :
No Explanation available for this question

# The equation of ellipse whose focus is (0, √a2-b2), directrix is y=a2/√a2-b2 and eccentricity is √a2-b2/a is

1.  x2/a2+y2/b2=1

2.  x2/b2+y2/a2=1

3.  x2/a2+y2/b2=2

4.  x2/b2+y2/a2=2

4

x2/b2+y2/a2=1

Explanation :
No Explanation available for this question

# The equation of the ellipse with its axes as the coordinate axes respectively, the length of latus rectum is 15 and distance between the foci 10 is

1.   x2/100+y2/75=1

2.  x2/75+y2/100=1

3.  x2/50+y2/25=1

4.  x2/25+y2/50=1

4

x2/100+y2/75=1

Explanation :
No Explanation available for this question

1.  12 mt

2.  15 mt

3.  20 mt

4.  36 mt

4