# The transformed equation of x3-(1/4)x2+(1/3)x-(1/144)=0 by removing fractional coefficient is

1.  y3+3y2+48y-12=0

2.  y3-3y2+48y+12=0

3.  y3+3y2+48y+12=0

4.  y3-3y2+48y-12=0

4

y3-3y2+48y-12=0

Explanation :
No Explanation available for this question

# On diminishing the roots of x5+4x3-x2+11=0 by 3, the transformed equation is y5+p1y4+p2y3+p3y2+p4y+p5

1.  94

2.  305

3.  507

4.  353

4

305

Explanation :
No Explanation available for this question

# If f(x)=0 is a R.E. of second type and even degree then a factor of f(x) is

1.  x2

2.  x2-1

3.  x-1

4.  x+1

4

x2-1

Explanation :
No Explanation available for this question

# If the inverse point of (2,-1) with respect to the circle x2+y2=9 is (p, q) then q=

1.  -3/5

2.  9

3.  -9/5

4.  18/5

4

-9/5

Explanation :
No Explanation available for this question

# P(2, 1) and Q(8, 4) are two points and x2+y2=20 is the equation of a circle. Then

1.  P and Q are inverse points with respect to the circle

2.  P and Q are extremities of a chord which makes an angle 90 at the centre of the circle

3.  P and Q are conjugate points with respect to the circle

4.  P and Q are extremities of a diameter of the circle

4

P and Q are inverse points with respect to the circle

Explanation :
No Explanation available for this question

# The inverse point of (2, -3) with respect to the circle x2+y2+6x-4y-12=0 is

1.  (-11/9, 9/2)

2.  (1/2, 1/2)

3.  (5/2, -5/2)

4.  (-1/2, -1/2)

4

(-1/2, -1/2)

Explanation :
No Explanation available for this question

# If the inverse point of (0, 0) with respect to the circle x2+y2+gx+fy+c=0 is (p, q) then q=

1.  -2fc/(g2+f2)

2.  -2fc/(g+f)

3.  –fc/[2(g2+f2)]

4.  –fc/(g2+f2)

4

-2fc/(g2+f2)

Explanation :
No Explanation available for this question

# If the inverse point of (x1, y1) with respect to the circle x2+y2=a2 is (x1/k, y1/k) then k=

1.  (x1+y1)/a2

2.  (x12+y12)/a2

3.  a/(x1+y1)

4.  a2/(x12+y12)

4

(x12+y12)/a2

Explanation :
No Explanation available for this question

# A tangent to the circle x2+y2=a2 intersects the coordinate axes at A and B. The locus of the point of intersection of the lines passing through A, B and parallel to the coordinate axes is

1.  (1/x2)+(1/y2)=(1/a)

2.  (1/x2)+(1/y2)=a2

3.  (1/x)+(1/y)=1/a

4.  (1/x2)+(1/y2)=(1/a2)

4

(1/x2)+(1/y2)=(1/a2)

Explanation :
No Explanation available for this question

# If a tangent to the circle x2+y2=a2 intersects the coordinate axes at A and B then the locus of the midpoint of the portion AB is

1.  a2(x2+y2)=x2y2

2.  a2(x+y)=4x2y2

3.  a2(x2+y2)=4x2y2

4.  a(x2+y2)=4xy

4