# The equation of the sphere which passes through the four points (0,0,0), (1,0,0), (0,1,0) and (0,0,1) is

1.  x2+y2+z2-x-y-z=0

2.  x2+y2+z2-2x-2y-2z=0

3.  x2+y2+z2+2x+2y+2z=0

4.  x2+y2+z2+x+y+z=0

4

x2+y2+z2-x-y-z=0

Explanation :
No Explanation available for this question

# The equation of the sphere having centre at the origin and cutting the coordinate axes at a distance 4 from the origin is

1.  x2+y2+z2=16

2.  x2+y2+z2=8

3.  x2+y2+z2=4

4.  x2+y2+z2=32

4

x2+y2+z2=16

Explanation :
No Explanation available for this question

# The radius of the sphere x2+y2+z2-2x+4y-6z+7=0 is

1.  49

2.  5

3.  -7

4.  √7

4

√7

Explanation :
No Explanation available for this question

# The focus and directrix of a parabola are (1,2) and 2x-3y+1=0. Then the equation of the tangent at the vertex is

1.  4x-6y+5=0

2.  4x-6y+9=0

3.  4x-6y+11=0

4.  4x-6y+7=0

4

4x-6y+5=0

Explanation :
No Explanation available for this question

# If (9,12) is one end of a focal chord of the parabola y2=16x then the slope of the chord is

1.  5/12

2.  7/3

3.  12/5

4.  3/7

4

12/5

Explanation :
No Explanation available for this question

# Equation of the focal chord of the parabola y2=4x inclined at an angle π/4 with the x-axes is

1.  x+y-5=0

2.  x-y+2=0

3.  x-y+4=0

4.  x-y-1=0

4

x-y-1=0

Explanation :
No Explanation available for this question

# The equation of the parabola with focus (0,0) and directrix x+y-4=0 is

1.  x2+y2-2xy+8x+8y-16=0

2.  x2+y2-2xy+8x+8y=0

3.  x2+y2+8x+8y-16=0

4.  x2-y2+8x+8y-16=0

4

x2+y2-2xy+8x+8y-16=0

Explanation :
No Explanation available for this question

# The distance of (1,-2) from the common chord of x2+y2-5x+4y-2=0 and x2+y2-2x+8y+3=0 is

1.  2

2.  1

3.  0

4.  3

4

0

Explanation :
No Explanation available for this question

# The perpendicular distance of radical axis determined by the circles x2+y2+2x+4y-7=0 and x2+y2-6x+2y-5=0 from the origin is

1.  1/√17

2.  1/4

3.  1/5

4.  2/17

4

1/√17

Explanation :
No Explanation available for this question

# If the length of a chord of the circle x2+y2=a2 is 2k then the locus of the midpoint of that chord is a circle of radius

1.  a2-k2

2.  √(k2-a2)

3.  √( a2+k2)

4.  √( a2-k2)

4

√( a2-k2)

Explanation :
No Explanation available for this question

## Interview Questions

 MongoDB Java Script Node JS PHP JQuery Python