# The point on the parabola x2=y which is nearest to (3,0) is

1.  (1, -1)

2.  (-1,1)

3.  (-1,-1)

4.  (1,1)

4

(1,1)

Explanation :
No Explanation available for this question

# If the locus of mid points of the chords of the parabola y2=4ax which passes through a fixed point (h, k) is also a parabola then its length of latusrectum is

1.  a

2.  3a

3.  7a/2

4.  2a

4

2a

Explanation :
No Explanation available for this question

# If (x1,y1) (x2,y2) are the extremities of a local chord of the parabola y2=16x then 4x1x2+y1y2=

1.  -48

2.  0

3.  -64

4.  16

4

0

Explanation :
No Explanation available for this question

# Equation of the circle on the latusrectum of y2=8x as ends of diameter is

1.  x2+y2-4y+16=0

2.  x2+y2-4x-12=0

3.  x2+y2+4x+12=0

4.  x2+y2-6x-12=0

4

x2+y2-4x-12=0

Explanation :
No Explanation available for this question

# The locus of poles of chords of the parabola y2=4ax which subtend a right angle at the vertex of the parabola is

1.  x+4a=0

2.  x+2a=0

3.  x+a=0

4.  x+6a=0

4

x+4a=0

Explanation :
No Explanation available for this question

# Equation of the ellipse with verticesfoci

1.  (x2/25)+(y2/9)=1

2.  (x2/32)+(y2/16)=1

3.  (x2/25)+(y2/7)=1

4.  (x2/25)+(y2/12)=1

4

(x2/25)+(y2/9)=1

Explanation :
No Explanation available for this question

# The sum of the distances of any point on the ellipse 3x2+4y2=24 from its foci is

1.  8√2

2.  8

3.  16√2

4.  4√2

4

4√2

Explanation :
No Explanation available for this question

# If α and β are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is

1.  [cosα+cosβ]/[cos(α-β)]

2.  [sinα-sinβ]/[sin(α-β)]

3.  [cosα-cosβ]/[cos(α-β)]

4.  [sinα+sinβ]/[sin(α+β)]

4

[sinα+sinβ]/[sin(α+β)]

Explanation :
No Explanation available for this question

# The point of intersection of the two tangents of the ellipse 2x2+3y2=6 at the ends of latus rectum is

1.  (3,0)

2.  (7/2,0)

3.  (9/2,0)

4.  (4,0)

4

(3,0)

Explanation :
No Explanation available for this question

1.  1/4

2.  2/3

3.  1/3

4.  1/2

4