# If m is the variance of P.D., then sum of the terms in odd places is

1.  e-m

2.  e-m cosh m

3.  e-m sinh m

4.  e-m coth m

4

e-m cosh m

Explanation :
No Explanation available for this question

# If X is a poisson variate such that p(X=0)=p(X=1), then p(x=2)=

1.  e/2

2.  e/6

3.  1/6e

4.  1/2e

4

1/2e

Explanation :
No Explanation available for this question

# If X is a poisson variable such that p(X=2)=(2/3)[p(x=1)], then p(X=3) is

1.  e-4/3

2.  (64/162)e-4/3

3.  e-3/4

4.  e4/3

4

(64/162)e-4/3

Explanation :
No Explanation available for this question

# If X is a poisson variate with p(X=0)=0.8, then the variance of X is

1.  loge20

2.  log1020

3.  loge(5/4)

4.  0

4

loge(5/4)

Explanation :
No Explanation available for this question

# If X is a poisson variable such that p(X=2)=9p(X=4)+90p(X=6), then the mean of X is

1.  3

2.  2

3.  1

4.  0

4

1

Explanation :
No Explanation available for this question

# If in a poisson frequency distribution, the frequency of 3 successes is 2/3 times the frequency of 4 successes, the mean of the distribution is

1.  2/3

2.  1/3

3.  6

4.  √6

4

6

Explanation :
No Explanation available for this question

# If 3% of electric bulbs manufactured by a company are defective; the probability that in a sample of 100 bulbs exactly five are defective is

1.  e-0.03(0.03)5/∠5

2.  e-0.3(0.3)5/∠5

3.  e-335/∠5

4.  e-0.33-5/∠5

4

e-335/∠5

Explanation :
No Explanation available for this question

# If (2x+1)/[(x+a)(bx-1)]=[(5/(x+a))-(3/(bx-1))], then (a,b) is

1.  (2,-1)

2.  (-2,-1)

3.  (-2,1)

4.  (2,1)

4

(-2,1)

Explanation :
No Explanation available for this question

# (3x+7)/(x2-3x+2)=

1.  [(5/(x-1))+(8/(x-2))]

2.  [(13/(x-2))-(10/(x-1))]

3.  [(8/(x-1))+(5/(x-2))]

4.  [(2/(x-1))+(3/(x-2))]

4

[(13/(x-2))-(10/(x-1))]

Explanation :
No Explanation available for this question

1.  (7,10)

2.  (10,7)

3.  (10,-7)

4.  (-10,7)

4