Equation of the parabola whose focus is (1, 2) and directric x + 1=0

1.  y2 – 4y – 4x + 4=0

2.  y2 – 2y – 4x + 8=0

3.  y2 – 4y – 6x + 9=0

4.  y2 – 2y + 4x – 8=0

4

y2 – 4y – 4x + 4=0

Explanation :
No Explanation available for this question

If n is a positive integer, then the coefficient of xn in the expansion of (1-2x)n/(1-3x) is:

1.  4n

2.  3n

3.  2n

4.  1

4

1

Explanation :
No Explanation available for this question

The parabola with directrix x + 2y -1 =0 and focus (1,00) is

1.  4x2 – 4xy + y2 – 8x + 4y + 4=0

2.  4x2 + 4xy + y2 – 8x + 4y + 4=0

3.  4x2 + 4xy + y2 +8x – 4y + 4=0

4.  4x2 – 4xy + y2 – 8x – 4y + 4=0

4

4x2 – 4xy + y2 – 8x + 4y + 4=0

Explanation :
No Explanation available for this question

The condition that the two spheres a(x2 + y2 + z2)=k2 may cut orthogonally (k ≠0)

1.  bp=ak2

2.  bk2 = ap

3.  (k2/p)-(-p/a)

4.  a = p2bk

4

bp=ak2

Explanation :
No Explanation available for this question

Sum of the slopes of the two tangents drawn from (3, 5) to y2=8x is:

1.  7/3

2.  5

3.  5/3

4.  8/3

4

5/3

Explanation :
No Explanation available for this question

1+ n/2+n(n-1)/2.4+n(n-1)(n-2)/2.4.6+............…∞

1.  (3/2)n

2.  (2/3)n

3.  (1/2)n

4.  2n

4

(3/2)n

Explanation :
No Explanation available for this question

The line 4x + 6y + 9=0 touches the parabola y2 = 4x at the point

1.  (-3, 9/4)

2.  (3, -9/4)

3.  (9/4, -3)

4.  ( -9/4 , -3)

4

(9/4, -3)

Explanation :
No Explanation available for this question

1+ 2/6+2.5/6.12+2.5.8/6.12.18+.............∞=

1.  2-2/3

2.  42/3

3.  22/3

4.  21/3

4

22/3

Explanation :
No Explanation available for this question

If the tangents at the extremities of a chord PQ of a parabola y2=4ax intersect at T, then the distances of the focus of the parabola from the points P, T, Q are in

1.  AP

2.  GP

3.  HP

4.  AGP

4

GP

Explanation :
No Explanation available for this question

1.  1/2 (5/2)1/3

2.  (5/2)1/3

3.  1/23√5

4.  3√5

4