The number of terms in the expansions of (x+y+z) n is

1.  n(n+1)/2

2.  (n+1) (n+2)/2

3.  n(n+3)/2

4.  (n+1) (n+3)/2

4

(n+1) (n+2)/2

Explanation :
No Explanation available for this question

If α,β are the roots of ax2+bx+c=0 then α3+β3=

1.  a/b

2.  b/c

3.  3abc-b3/a3

4.  c/a

4

3abc-b3/a3

Explanation :
No Explanation available for this question

The equation of the tangents from the origin to x2+y2-6x-2y+8=0 are

1.  x+y=0,7x+y=0

2.  x-y=0,x+7y=0

3.  x+y=0,x+7y=0

4.  x=0,y=0

4

x-y=0,x+7y=0

Explanation :
No Explanation available for this question

The circle represented by x2+y2+2gx+c=0(c

1.  (0,0)

2.  (0,√c)

3.

4.  (√-c,0)

4

Explanation :
No Explanation available for this question

A right angled isosceles triangle is inscribed in a circle x2+y2-4x-2y-11=0.Then the length of the side of the triangle is

1.  4

2.  4√2

3.  6

4.  2√2

4

4√2

Explanation :
No Explanation available for this question

if the circles x2+y2+2ax+c=0 and x2+y2+2by+c=0 touch each other then 1/c=

1.  a2+b2

2.  1/a+1/b

3.  1/a2 + 1/b2

4.  a+b

4

1/a2 + 1/b2

Explanation :
No Explanation available for this question

A straight line x/a+y/b=1 moves such that 1/a2+1/b2+1/c2(c is constant).Then the locus of the foot of the perpendicular drawn from(0,0) to the given line is

1.  x2+y2=c2

2.  x2+y2=1/c2

3.  x2+y2=2c2

4.  x2+y2=4c2

4

x2+y2=c2

Explanation :
No Explanation available for this question

If the circles x2+y2+2ax+c=0 and x2+y2+2bx+c=0 touch eachother then 1/c=

1.  x2+y2=c2

2.  x2+y2=1/c2

3.  x2+y2=2c2

4.  x2+y2=4c2

4

x2+y2=c2

Explanation :
No Explanation available for this question

If the inverse point of(1,-1) with respect to the circle x2+y2=1/4 is C then Cx+Cy=

1.  1/4

2.  (1/4,-1/8)

3.  0

4.  2

4

0

Explanation :
No Explanation available for this question

I: If α,β are the roots of x2+Kx+2=0 ,and α-β=1,then K=

1.  Only I

2.  Only II

3.  Both I and II

4.  Neither I nor II

4