# If the circles (x+a)2+(y+b)2=a2, (x+α)2+(y+β)2=β2 cut orthogonally then α2+b2

1.  2(aα+bβ)

2.  -2(aα+bβ)

3.  α2+β2

4.  aα+bβ

4

2(aα+bβ)

Explanation :
No Explanation available for this question

# If α, β are the roots of ax2-bx+c=0 then α3β3 +α2β3 + α3β2=

1.  c2/a3 (c+2b)

2.  bc3/a3

3.  c2/a3 (c-2b)

4.  bc/a3

4

c2/a3 (c+2b)

Explanation :
No Explanation available for this question

# The angle subtended by the double ordinate of length 16 of the parabola y2=8x at its vertex is

1.  π/2

2.  π/3

3.  π/4

4.  π/6

4

π/2

Explanation :
No Explanation available for this question

# If α, β are the roots of ax2+2bx+c=0 then α/β +β/α

1.  2 (2b2-ac)/ac

2.  4 (b2-ac)/ac

3.  4(b2-ac)/a2c2

4.  4(b2-ac)/a

4

2 (2b2-ac)/ac

Explanation :
No Explanation available for this question

# Equation of the parabola whose axis is horizontal and passing through points (-2,1),(1,2),(-1,3) is

1.  3y2-9x+10y-15=0

2.  5y2+2x-21y+40=0

3.  5y2+2x-21y+20=0

4.  5y2-2x+10y+2=0

4

5y2+2x-21y+20=0

Explanation :
No Explanation available for this question

# The equation of the parabola with focus (0,0) and directrix x+y-4=0 is

1.  x2-y2+8x+8y-16=0

2.  x2+y2+8x+8y-16=0

3.  x2+y2-2xy+8x+8y=0

4.  x2+y2-2xy+8x+8y-16=0

4

x2+y2-2xy+8x+8y-16=0

Explanation :
No Explanation available for this question

# The arrangement of the following quadratic equations in the descending order of their sum of the roots A: x2+11 =0

1.  A,B,C,D

2.  D,C,B,A

3.  B,A,C,D

4.  A,C,B,D

4

B,A,C,D

Explanation :
No Explanation available for this question

# If 3+4i is a root of the equation x2+Ax+B =0 and √3-2 is a root of x2+Cx+D =0

1.  A > C > D >B

2.  A < D < C < B

3.  A > C > D > B

4.  A > D > C > B

4

A < D < C < B

Explanation :
No Explanation available for this question

# If 2+i√3 is a root of the equation x2+px+q =0, then

1.  p =4, q=7

2.  p=4, q=-3

3.  p=-4, q=-7

4.  p=-4, q=7

4

p=-4, q=7

Explanation :
No Explanation available for this question

1.  -3

2.  -5

3.  5

4.  3

4