# The equation whose roots are exceed by 1/2 than those of 8x3-4x2+6x-1=0 is

1.  4x3-8x2+8x-3=0

2.  8x3-8x2+8x-3=0

3.  8x3-16x2-8x-3=0

4.  8x3-16x2+8x-3=0

4

4x3-8x2+8x-3=0

Explanation :
No Explanation available for this question

# The roots of the equation x3-14x2+56x-64=0 are in progression

1.  Geometric

2.  Arithmetic

3.  Harmonic

4.  A.G.P

4

Geometric

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3+3x2+2x+3=0 then ∑1/α2β2=

1.  -4/9

2.  -5/9

3.  5/9

4.  4/9

4

5/9

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3+px2+qx+r=0 then ∑β2+γ2/βγ

1.  (pq/r)-4

2.  (pq/r)-3

3.  (pq/r)-2

4.  (pq/r)-1

4

(pq/r)-3

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3+ax2+bx+c=0 then ∑α2(β+γ)=

1.  3c+ab

2.  3c-ab

3.  ab-3c

4.  ab+3c

4

3c-ab

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3+px2+qx+r=0 then (β+γ-3α)(γ+α-3β)(α+β-3γ)=

1.  3p3+16pq

2.  3p3-16pq

3.  3p3-16pq+64r

4.  3p3+16pq+64r

4

3p3-16pq+64r

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3-x-1=0 then the transformed equation having the roots 1+α/1-α,1+β/1-β,1+γ/1-γ is obtained by taking x=

1.  y-1/3y+1

2.  y-1/2y+1

3.  y-1/y+1

4.  2y-1/y+1

4

y-1/y+1

Explanation :
No Explanation available for this question

# If α,β,γ are the roots of x3+2x2+3x+4=0 then ∑α2β2=

1.  -7

2.  14

3.  -14

4.  7

4

-7

Explanation :
No Explanation available for this question

# If ax3+bx2+cx+d=0 is a R.E of the first type then

1.  a=-c,b=-d

2.  a=-d,b=-c

3.  a=c,b=d

4.  a=d,b=c

4

a=d,b=c

Explanation :
No Explanation available for this question

1.  x3-2x2-5x+6

2.  x3-2x2+5x+6

3.  x3+2x2-5x+6

4.  0

4