1.  √6

2.  6

3.  36

4.  6√6

4

6

Explanation :
No Explanation available for this question

# Let be three non-coplanar vectors and let be the vectors defined by

1.  0

2.  1

3.  2

4.  3

4

3

Explanation :
No Explanation available for this question

# Let A vector in the plane of

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# The point if intersection of the lines

1.  (4, 4, 5)

2.  (6, 4, 7)

3.  (8, 8, 9)

4.  (10, 12, 11)

4

(8, 8, 9)

Explanation :
No Explanation available for this question

# The vectors are the adjacent sides of a parallelegram. The angle between its diagonals is

1.  π/2

2.  π/3 or 2π/3

3.  3π/4 or π/4

4.  5π/6 or π/6

4

3π/4 or π/4

Explanation :
No Explanation available for this question

# If pth,qth,rth terms of a geometric progression are the positive numbers a, b, c respectively, then the angle between the vectors

1.  π/3

2.  π/2

3.

4.  π/4

4

π/2

Explanation :
No Explanation available for this question

# A vertical pole subtends an angle tan-1(1/2) at a point P on the ground. If the angles subtended by the upper half and the lower half of the pole at P are respectively α and β ,then (tanα,tanβ)

1.  (1/4,1/5)

2.  (1/5,2/9)

3.  (2/9,1/4)

4.  (1/4,2/9)

4

(2/9,1/4)

Explanation :
No Explanation available for this question

# If α,β,γ are length of the altitudes of a traingle ABC with area Δ,then Δ/R2[(1/α2)+(1/β2)+(1/γ2)]=

1.  sin2A+sin2B+sin2C

2.  cos2A+cos2B+cos2C

3.  tan2A+tan2B+tan2C

4.  cot2A+cot2B+cot2C

4

sin2A+sin2B+sin2C

Explanation :
No Explanation available for this question

# In an acute-angled traingle, cotB cotC+ cotA cotC + cotA cotB=

1.  -1

2.  0

3.  1

4.  2

4

1

Explanation :
No Explanation available for this question

1.  tan hx

2.  cot hx

3.  sec hx

4.  cosec hx

4