# If f : A → B is a bijective function, then f-1 of is:

1.  fof-1

2.  f

3.  f-1

4.  IA (Identity mapping of the set A)

4

I<sub>A</sub> (Identity mapping of the set A)

Explanation :
No Explanation available for this question

# If f : R→R is defined by f(x)=2x+|x|, then f(3x)-f(-x)-4x is:

1.  f(x)

2.  -f(x)

3.  f(-x)

4.  2f(x)

4

2f(x)

Explanation :
No Explanation available for this question

# If x=2/(3+√7), then (x-3)2 is equal to:

1.  1

2.  3

3.  7

4.  6

4

7

Explanation :
No Explanation available for this question

# If(1.5)n=(0.15)b=100, then 1/a-1/b is equal to:

1.  0

2.  1

3.  1/2

4.  2/3

4

1/2

Explanation :
No Explanation available for this question

# There are two towers, on a horizontal line from the midpoint of the line joining their feet. The tops of the higher and lowers appear at an angle of elevations on 60" and 300 respectively. The first tower has a height of 100 met

1.  100/√3 m

2.  100/√5 m

3.  100√2 m

4.  100/3 m

4

100/3 m

Explanation :
No Explanation available for this question

# The horizontal distance between two towers is 60m and the angular depression of the top of the first as seen from the second, which is 150 meter high is 300. The height of the first tower is:

1.  (150+20√3)m

2.  (150+15√3)m

3.  (150-20√5)m

4.  (150-20√3)m

4

(150-20&#8730;3)m

Explanation :
No Explanation available for this question

# The probability that a number selected at random from the set of numbers {1, 2, 3, .....100} is a cube, is:

1.  1/25

2.  2/25

3.  3/25

4.  4/25

4

1/25

Explanation :
No Explanation available for this question

# When two dice are thrown. The probability of getting 10 or 11 is:

1.  7/36

2.  5/36

3.  5/18

4.  7/18

4

5/36

Explanation :
No Explanation available for this question

# The probability of getting exactly 4 heads in 6 tosses of a coin, is:

1.  15/60

2.  15/64

3.  13/64

4.  10/64

4

15/64

Explanation :
No Explanation available for this question

# 0.0001 < n < 0.001, then:

1.  -4 < log n < -3

2.  -3 < log n < -2

3.  -2 < log n < -1

4.  -5 < log n < -4

4