# A:If f(x)= x sin (1/x)(x≠0) and f(0)=0 then f’(0)=0 R: does not exist

1.  Both A are R are true R is correct reasons of A

2.  Both A and R are true R is not correct reasons of A

3.  A is true but R is false

4.  A is false but R is true

4

A is false but R is true

Explanation :
No Explanation available for this question

# The stability of hydrides increase from NH3 to BiH3 in group 15 of the periodic. The area of the region enclosed by the curves y = x, x = e, y =1/x and the

1.  1/2 square units

2.  1 square units

3.  3/2 square units

4.  5/2 square units

4

3/2 square units

Explanation :
No Explanation available for this question

# If x ≥ y and y > 1, then the value of the expression logx (x/y) + logy (y/x) can never be

1.  -1

2.  -0.5

3.  0

4.  1

4

1

Explanation :
No Explanation available for this question

# A(2, 3), B(x ,y) and if C(3, 4) divides AB in the ratio 1 : 5 internally then B =

1.  (8,9)

2.  (8,-9)

3.  (-8,9)

4.  (-8,-9)

4

(8,9)

Explanation :
No Explanation available for this question

# In a parallelogram, the ends of one diagonal are (3, -4) and (-6, 5). If the second diagonal has one end at (-2, 1) then its other end is

1.  (-1, 0)

2.  (0, -1)

3.  (-1, 1)

4.  (1, 1)

4

(-1, 0)

Explanation :
No Explanation available for this question

# The mid-points of the sides of a triangle are D(6, 1), E(3, 5) and F(-l, -2) then the vertex opposite to D is

1.  (-4, 2)

2.  (-4, 5)

3.  (2, 5)

4.  (10, 8)

4

(-4, 2)

Explanation :
No Explanation available for this question

# If the centroid of the triangle formed by (a, b), (b, c) and (c, a) is the origin then + =

1.  0

2.  3 abc

3.   a + b + c

4.  abc

4

3 abc

Explanation :
No Explanation available for this question

# The Centriod of a triangle is (2,3) and two of its vertices are (5,6) and (-1,4). The third vertex of the triangle is

1.  (2,1)

2.  (2,-1)

3.  (1,2)

4.  (-1,0)

4

(2,-1)

Explanation :
No Explanation available for this question

# The circumcentre of the triangle formed by(0,0), (2, -1) and ( -1, 3) is (5/2,5/2). Then the orthocentre is

1.  (-4, -3)

2.  (4, 3)

3.  (-4, 3)

4.  (4, -2)

4

(-4, -3)

Explanation :
No Explanation available for this question

# If A(3, -4), B(7, 2) are the ends of a diameter of a circle and C(3, 2) is a point on the circle. then the orthocentre of the ABC is

1.  (0, 0)

2.  (3, -4)

3.  (3, 2)

4.  (7,2)

4