# The signal flow graph of a system is shown in the figure. The transfer function (C(s)/R(s)) of the system is

1.  6/(s2 + 29s + 6)

2.  6s/(s2 + 29s + 6)

3.  (s(s + 2))/(s2 + 29s + 6)

4.  (s(s + 27))/(s2 + 29s + 6)

4

6/(s2 + 29s + 6)

Explanation :
No Explanation available for this question

# The  root  locus  of  the  system G(s) H(s)  =  K/(s(s  +  2)(s  +  3))  has  the  break-away  point located at

1.  (-0.5, 0)

2.  (-2.548, 0)

3.  (-4, 0)

4.  (-0.784, 0)

4

(-0.784, 0)

Explanation :
No Explanation available for this question

# The gain margin and the phase margin of a feedback system with G(s)H(s) = s/(s + 100)3are

1.   0 dB, 0°

2.  ∞, ∞

3.  ∞, 0°

4.  88.5 dB, ∞

4

88.5 dB, ∞

Explanation :
No Explanation available for this question

# A DSB-SC signal is to be generated with a carrier frequency fe = 1MHz using a non-linear device with the input-output characteristic υ0 = a0υi+ a1 iυ3 where a0 and a1 are constants. The output of  the non-linear device can be  filtered by an appropriate band-pass filter. Let υi = Ate cos (2 π  f et t) + m(t) where m(t)  is  the message signal. Then  the value  fet(inMHz) is

1.  1.0

2.  0.333

3.  0.5

4.  3.0

4

1.0

Explanation :
No Explanation available for this question

# c(t) and m(t) are used  to generate an AM signal. The modulation  index of  the generated AM signal is 0.5. Then the quantity (Total sideband power)/(Carrier power) is

1.  1/2

2.  1/4

3.  1/3

4.  1/8

4

1/8

Explanation :
No Explanation available for this question

# c(t) and m(t) are used  to generate an FM  signal.  If  the peak  frequency deviation of  the generated FM signal is three times the transmission bandwidth of the AM singal, then the coefficient  of  the  term  cos  [2 π  (1008  x  10 3  t)]in  the  FM  signal  (in  terms  of  the  Bessel coefficients) is

1.  5 J4(3)

2.  (5/2) J8(3)

3.  (5/2) J8(4)

4.  5 J4(6)

4

5 J4(6)

Explanation :
No Explanation available for this question

# A superheterodyne receiver is to operate in the frequency range 550 kHz - 1650 kHz, with the  intermediate  frequency  of  450  kHz.  Let  R  =  (Cmax)/(Cmin)  denote  the  required capacitance  ratio of  the  local oscillator and  I denote  the  image  frequency  (in kHz) of  the incoming signal. If the receiver is tuned to 700 kHz, then

1.  R = 4.41, I = 1600

2.  R = 2.10, I = 1150

3.  R = 3.0, I = 1600

4.  R = 9.0, I = 1150

4

R = 4.41, I = 1600

Explanation :
No Explanation available for this question

# A  sinusoidal  signal with  peak-to-peak  amplitude  of  1.536  V  is  quantized  into  128  levels using a mid-rise uniform quantizer. The quantization-noise power is

1.  0.768 V

2.  48 x 10-6 V2

3.  12 x 10-6 V2

4.  3.072 V

4

12 x 10-6 V2

Explanation :
No Explanation available for this question

# If Eb, the energy per bit of a binary digital signal, is 10-6 watt-sec and the one-sided power spectral density of  the white noise, N0 = 10-5 W/Hz,  then  the output SNR of  the matched filter is

1.  26 dB

2.  10 dB

3.  20 dB

4.  13 dB

4

13 dB

Explanation :
No Explanation available for this question

# The  input  to  a  linear  delta modulator  having  a  step-size   =  0.628  is  a  sine wave with frequency  fm  and  peak  amplitude  Em.  1f  the  sampling  frequency  fs  =  40  kHz,  the combination of the sine-wave frequency and the peak amplitude, where slope overload will take place is

1.  Em 0.3 V, fm 8 kHz

2.  Em 1.5 V, fm 4 kHz

3.  Em 1.5 V, fm 2 kHz

4.  Em 3.0 V, fm 1 kHz

4