# The current flowing through the resistance R in the circuit in figure has the form P cos 4t, where P is

1.  (0.18 + j 0.72)

2.  (0.46 + j 1.90)

3.  -(0.18 + j 1.90)

4.  -(0.192 + j 0.144)

4

-(0.18 + j 1.90)

Explanation :
No Explanation available for this question

# At t = 0 +, the current i1 is

1.  (-V/2R)

2.  (-V/R)

3.  (-V/4R)

4.  zero

4

zero

Explanation :
No Explanation available for this question

# I1(s) and I2(s) are the Laplace transforms of  i1(t) and i2(t) respectively. The equations  for the  loop  currents  I1(s)  and  I2(s)  for  the  circuit  shown  in  the  figure  after  the  switch  is brought from position 1 to position 2 at t = 0, are

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# An  input voltage υ(t) = 10√2 cos  (t + 10°) + 10√3 cos  (2t + 10°) V  is applied  to a series combination of  resistance R = 1 and an  inductance L = 1H. The  resulting steady-state current i(t) in ampere is

1.  10 cos (t + 55°) + 10 cos (2t + 10° + tan-1 2)

2.  10 cos (t + 55°) + 10√(3/2) cos (2t + 55°)

3.  10 cos (t - 35°) + 10 cos (2t + 10° - tan-1 2)

4.  10 cos (t - 35) + 10√(3/2) cos (2t - 35°)

4

10 cos (t - 35°) + 10 cos (2t + 10° - tan-1 2)

Explanation :
No Explanation available for this question

# The  driving-point  impedance  Z(s)  of  a  network  has  the  pole-zero  locations  as  shown  in figure. If Z(0) = 3, then Z(s) is

1.   (3(s + 3))/(s2 + 2s + 3)

2.  (2(s + 3))/(s2 + 2s + 2)

3.  (3(s - 3))/(s2 - 2s - 2)

4.  (2(s - 3))/(s2 - 2s - 3)

4

(2(s + 3))/(s2 + 2s + 2)

Explanation :
No Explanation available for this question

# The impedance parameters Z11 and Z12 of the two-port network in the figure are

1.  Z11 = 2.75 and Z12 = 0.25?

2.  Z11 = 3? and Z12 = 0.5?

3.  Z11 = 3? and Z12 = 0.25?

4.  Z11 = 2.25? and Z12 = 0.5?

4

Z11 = 2.75 and Z12 = 0.25?

Explanation :
No Explanation available for this question

# An  n-type  silicon  bar  0.1  cm  long  and  100  μm 2  in  cross-sectional  area  has  a majority carrier concentration of 5 x 1020/m3 and the carrier mobility is 0.13 m0/V-s at 300K. If the charge of an electron is 1.6 x 10-19 coulomb, then the resistance of the bar is

1.  106 ohm

2.  104 ohm

3.  10-1 ohm

4.  10-4 ohm

4

10-1 ohm

Explanation :
No Explanation available for this question

# The electron concentration  in a sample of uniformly doped n-type silicon at 300 K varies linearly  from  1017/cm3  at  x  =  0  to  6  x  1016/cm3  at  x  =  2 μm.  Assume  a  situation  that electrons are supplied  to keep  this concentration gradient constant with  time.  If electronic charge  is  1.6  x  10-19  coulomb  and  the  diffusion  constant  Dn  =  35  cm2/s,  the  current density in the silicon, if no electric field is present, is

1.  zero

2.  - 1120 A/cm2

3.  +1120 A/cm2

4.  - 1130 A/cm2

4

+1120 A/cm2

Explanation :
No Explanation available for this question

# Match items in Group 1 with items in Group 2, most suitably.a   Group 1   Group 2 P LED 1 Heavy doping Q Avalanche Photodiode 2 Coherent Radiation R Tunnel diode 3 Spontaneous Emission S LASER 4 Current gain

1.  P-1, Q-2, R-4, S-3

2.  P-2, Q-3, R-1, S-4

3.  P-3, Q-4, R-1, S-2

4.   P-2, Q-1, R-4, S-3

4

P-3, Q-4, R-1, S-2

Explanation :
No Explanation available for this question

1.  1

2.  5

3.  4 x 103

4.  8 x 103

4