# What memory address range is NOT represented by chip # 1 and chip # 2 in the figure A0 to A15 in this figure are the address lines and CS means Chip Select

1.  0100-02FF

2.  1500-16FF

3.  F900-FAFF

4.  F800-F9FF

4

F800-F9FF

Explanation :
No Explanation available for this question

# The output y(t) of a  linear  time  invariant system  is related  to  its  input x(t) by  the  following equation:  y(t) = 0.5x (t - td + T) + x(t - td) + 0.5x (t - td - T). The filter transfer function H(ω) of such a system is given by

1.  (1 + cosωT)e-jωtd

2.  (1 + 0.5 cosωT)e-jωtd

3.  (1 - cosωT)e-jωtd

4.  (1 - 0.5 cosωT)e-jωtd

4

(1 + cosωT)e-jωtd

Explanation :
No Explanation available for this question

# Match the following and choose the correct combination   Group 1   Group 2 E Continous and a periodic signal  1 Fourier representation is continous and a periodic F Continous and  periodic signal 2 Fourier representation is discrete and a periodic G Discrete and a periodic signal 3 Fourier representation is continous and a periodic H Discrete and periodic signal 4 Fourier representation is discrete and a periodic

1.  E - 3, F - 2, G - 4, H - 1

2.  E - 1, F - 3, G - 2, H - 4

3.  E - 1, F - 2, G - 3, H - 4

4.  E - 2, F - 1, G - 4, H – 3

4

E - 1, F - 2, G - 3, H - 4

Explanation :
No Explanation available for this question

# A  signal  x(n)  =  sin( ω 0n  +  )  is  the  input  to  a  linear  time-invariant  system  having  afrequency response H(ejω). If the output of the system is Ax(n - n0), then the most general form of    H(ejω) will be

1.  -n0ω0 + β for any arbitrary real β.

2.  -n0ω0 + 2πk for any arbitrary integer k.

3.  n0ω0 + 2πk for any arbitrary integer k.

4.  -n0ω0 .

4

-n0ω0 + 2πk for any arbitrary integer k.

Explanation :
No Explanation available for this question

# For a signal x(t) the fourier transform is X(f). Then the inverse Fourier transform of X(3f +2) is given by

1.  (1/2x)(t/2)ej3πt

2.  (1/3x)(t/3)e-j4πt/3

3.  3x(3t)e-j4πt

4.  x(3t + 2)

4

(1/3x)(t/3)e-j4πt/3

Explanation :
No Explanation available for this question

# The polar diagram of a conditionally stable system for open loop gain K = 1 is shown in the figure. The open  loop  transfer  function of  the  system  is  known  to be  stable. The  closed loop system is stable for

1.  K < 5 and 1/2 < K < 1/8.

2.  K < 1/8 and 1/2 < K < 5.

3.   K < 1/8 and 5 < K.

4.   K > 1/8 and K < 5.

4

K < 1/8 and 1/2 < K < 5.

Explanation :
No Explanation available for this question

# In the derivation of expression for peak percent overshoot which one of the following conditions is NOT required

1.  System is linear and time invariant.

2.  The system transfer function has a pair of complex conjugate poles and no zeroes.

3.  There is no transportation delay in the system.

4.  The system has zero initial conditions.

4

There is no transportation delay in the system.

Explanation :
No Explanation available for this question

# Given the ideal operational amplifier circuit shown in the figure indicate the correct transfer characteristics assuming ideal diodes with zero cut-in voltage

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# A  ramp  input  applied  to  an  unity  feedback  system  results  in  5%  steady  state  error. The type number and zero frequency gain of the system are respectively

1.  1 and 20

2.  0 and 20

3.  0 and 1/20

4.  1 and 1/20

4

1 and 20

Explanation :
No Explanation available for this question

# A  double  integrator  plant, G  (s) =  (K/s2), H(s)  =  1  is  to  be  compensated  to  achieve  the  damping  ratio ζ = 0.5, and an undamped natural  frequency,  ω n = 5  rad/s. Which one of the following compensator Ge(s) will be suitable

1.  (s + 3)/(s + 9.9)

2.  (s + 9.9)/(s + 3)

3.  (s - 6)/(s + 8.33)

4.  (s - 6)/s

4