# Consider an angle modulated signal x(t)=6cos[2π x 106t+2sin(8000πt) 4cos(8000πt)] V. The average power of x(t) is

1.   10 W

2.  18 W

3.  20 W

4.  28 W

4

18 W

Explanation :
No Explanation available for this question

# For a periodic signal v(t)=30 sin 100t+10cos 300t+6sin(500t+π/4), the fundamental frequency in rad/s is

1.   100

2.  300

3.  500

4.  1500

4

100

Explanation :
No Explanation available for this question

# The PDF of a Gaussian random variable X is given by pX(X)=1/3√2π)exp[-(x-4)2/18]. The probability of the event {X=4} is

1.   ½

2.  1/(3√2π)

3.  0

4.  ¼

4

0

Explanation :
No Explanation available for this question

# Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability  that max[X. Y] is less than ½ is

1.   ¾

2.  9/16

3.  ¼

4.  2/3

4

9/16

Explanation :
No Explanation available for this question

# The power spectral density of a real process X9t) for possible frequencies is shown below. The values of E[X2(t) and E[X(t)], respectively are

1.   6000/π, 0

2.  6400/π, 0

3.  6400/π, 20/(π√2)

4.  6000/π, 20/(π√2)

4

6400/π, 0

Explanation :
No Explanation available for this question

# During transmission over a communication channel, bit errors occur independently with an err4or probability ‘p’. If a block of n bits is transmitted the profanity of at most one bit error is equal to

1.   1-(1-p)n

2.  p+(n-1)(1-p)

3.  np(1-p)n-1

4.   (1-p)n+np(1-p)n-1

4

(1-p)n+np(1-p)n-1

Explanation :
No Explanation available for this question

# (t) is a stationary process with the power spectral density Sx(f)>0 for all f. The process is passed through a system shown below let Sy(f) be the power spectral density of Y9t). Which one of the following statements is

1.   Sy(f)>0 for all f

2.  Sf>0for|f|>1 kHz

3.  Sy(f)=0 for f=nf0, f0=2kHz, n any integer

4.  Sy(f)=0 for f=92n+1)f0, f0=1 kHz, n any integer

4

Sy(f)=0 for f=92n+1)f0, f0=1 kHz, n any integer

Explanation :
No Explanation available for this question

# (t) is a stationary random process with autocorrelation function Rx(????)=exp(-π????2). This process is passed through the system shown below. The power spectral density of the output process Y(t) is

1.   (4π2f2+1)exp(-πf2)

2.  (4π2f2-1)exp(-πf2)

3.  (4π2f2+1)exp(-πf)

4.  (4π2f2-1)exp(-πf)

4

(4π2f2+1)exp(-πf2)

Explanation :
No Explanation available for this question

# A binary symmetric channel (BSC) has a transition probability of 1/8. If the binary transmit symbol X is such that p(X=0)=9/10, then the probality of occur for an optimum receiver will be

1.  7/80

2.  63/80

3.  9/10

4.  1/10

4

1/10

Explanation :
No Explanation available for this question

1.   ½

2.   ¼

3.  1/8

4.  1/16

4