# If each branch of a Delta circuit has impedance √3 Z, then each branch of the equivalent wye circuit has impedance

1.   Z/√3

2.  3Z

3.  3√3Z

4.  Z/3

4

Z/√3

Explanation :
No Explanation available for this question

# The admittance parameter y12 in the 2-port network in Fig. is

1.   -0.2 mho

2.  0.1 mho

3.   -0.05 mho

4.   0.05 mho

4

-0.05 mho

Explanation :
No Explanation available for this question

# For the two –port network shown below, the short –circuit admittance parameter matrix is

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# The open circuit impedance matrix of the 2 port network shown in figure is

1.

2.

3.

4.

4

Explanation :
No Explanation available for this question

# Two Two-port networks are connected in cascade. The combination is to be represented as a single two-port network. The parameters of the network are obtained by multiplying the individual

1.   z-parameter matrices

2.  h-parameter matrices

3.  y-parameter matrices

4.  ABCD parameter matrices

4

ABCD parameter matrices

Explanation :
No Explanation available for this question

# The Z parameters Z11 and Z21 for the 2-port network in Fig. are

1.   Z11=-(6/11)Ω; Z21=(16/11)Ω

2.   Z11=(6/11)Ω; Z21=(4/11)Ω

3.   Z11=(6/11)Ω; Z21=-(16/11)Ω

4.  Z11=(4/11)Ω; Z21=(4/11)Ω

4

Z11=(6/11)Ω; Z21=-(16/11)Ω

Explanation :
No Explanation available for this question

# In the circuit shown below, the network N is described by the following Y matrix: The voltage gain (V2/V1) is

1.   1/90

2.  -1/90

3.  -1/99

4.  -1/11

4

-1/11

Explanation :
No Explanation available for this question

# The admittance parameters of a 2-port network shown in Fig. are given by Y11=2 mho, Y12 = -0.5 mho, Y21=4.8 mho, Y22=1 mho. The output port is terminated with a load admittance YL=0.2 mho. Find E2 for each of the following conditions a. E1 = 10

1.   -40V

2.  -10V

3.  -20V

4.  None of these

4

-20V

Explanation :
No Explanation available for this question

# The necessary and sufficient condition for a rational function of s, T9s) to be a driving point impedance of an RC network is that all poles and zeros should be

1.   Simple and lie on the negative real axis of the s-plane

2.  Complex and lie in the left half of the s-plane

3.  Complex and lie in the right half of the s-plane

4.  Simple and lie on the positive real axis of the s-plane

4

Simple and lie on the negative real axis of the s-plane

Explanation :
No Explanation available for this question

1.   4 ej4πf

2.  2 e-j8πf

3.  4 e-j4πf

4.   2 ej8πf

4