# The system of equations a1 x+ a2 y = 0 b1 x+ b2 y=0 Where a1,a2,b1b2 are the real numbers, has a non- trivial solution if

1.  a1b1=a2b2

2.  a1b2=b1a2

3.  a1a2=b1b2

4.  None of these

4

a1b2=b1a2

Explanation :
No Explanation available for this question

# Solution of the given matrix equation is

1.  x1=0,x2=0,x3=0

2.  x1=1,x2=1,x3=0

3.  x1=0,x2=1,x3=1

4.  x1=2,x2=-5,x4=-1

4

x1=0,x2=0,x3=0

Explanation :
No Explanation available for this question

# The system of linear equations (4d-1) x+y+z = 0 -y+z =0 (4d-1) z = 0 Has a non-trivial solution, if d equals

1.  1/2

2.  1/4

3.  3/4

4.  1

4

1/4

Explanation :
No Explanation available for this question

# If product of matrix Is null matrix, then Ñ³ and Φ differ by an

1.  Odd multiple of π

2.  Even multiple of π

3.  Odd multiple of π/2

4.  Even multiple of π/2

4

Odd multiple of π/2

Explanation :
No Explanation available for this question

# Inverse of the matrixis

1.

2.

3.

4.

4 Explanation :
No Explanation available for this question

# The system of equations 2x+4y =0, 5x+10y= 25 has

1.  No unique solution

2.  Only one solution

3.  Only two solution

4.  Infinite solutions

4

Infinite solutions

Explanation :
No Explanation available for this question

# Sum of the Eigen values of the matrix for real and negative values of X is

1.  Greater than zero

2.  Less than zero

3.  Zero

4.  Dependent on the value of x

4

Greater than zero

Explanation :
No Explanation available for this question

# The system of equations 4x+6y+8z= 0 7x+8y+9z= 0 3x+2y+z = 0

1.  No solution

2.  Only one solution

3.  Two solution

4.  Infinite number of solution

4

Only one solution

Explanation :
No Explanation available for this question

# Eigen values ofare

1.  0,0 0

2.  0, 0 1

3.  0,0,3

4.  1,1,1

4

0,0,3

Explanation :
No Explanation available for this question

# For following set of simultaneous equations 1.5x- 0.5y = 2 4x+2y+3z = 9 7x+ y+ 5z =10

1.  Solution is unique

2.  Infinitely many solutions exist

3.  Equations are incompatible

4.  Finite number of multiple solutions exist

4