# Sum of the alternating harmonic seriesis

1.  Zero

2.  Infinite

3.  Log 2

4.  Not defined as the series is not convergent

4

Log 2

Explanation :
No Explanation available for this question

# The seriesis convergent if

1.  0

2.  x>1/e

3.  2/e

4.  3/e

4

0<x<1/e

Explanation :
No Explanation available for this question

# The alternating series u1-u2+u3-u4+…(0< un< n) is convergent if

1.  un

2.  un

3.  un>un+1 and un→0 as n→∞

4.  un>un+1 or  un→∞ as n→∞

4

un<un+1 and un→0 as n→∞

Explanation :
No Explanation available for this question

# The seriesis

1.  Convergent if b-a

2.  Convergent if b≤1+a and divergent if b>1+a

3.  Convergent if b>1+a and divergent if b≤1+a

4.  Convergent if b≥1+a and divergent if b

5.

5

Convergent if b>1+a and divergent if b≤1+a

Explanation :
No Explanation available for this question

# The series x+x1+1/2+x1+1/2+1/3+x1+1/2+1/3+1/4+… is

1.  Convergent if x≥(1/e)

2.  Divergent if x≥(1/e)

3.  Convergent if x>(1/e)

4.  Divergent if x≤(1/e)

4

Divergent if x≥(1/e)

Explanation :
No Explanation available for this question

# The series 1/n(log n)P is divergent if

1.  p>1

2.  p≥1

3.  p

4.  p≤1

4

p≤1

Explanation :
No Explanation available for this question

# Let ∑un be a divergent series of positive terms and let ∑1/dn be a divergent series of positive terms such that,then the series is

1.  Convergent if k>0

2.  Divergent if k≥0

3.  Divergent if k

4.  Both (a) and (c)

4

Both (a) and (c)

Explanation :
No Explanation available for this question

# The series,p>0 is

1.  Convergent if p

2.  Convergent if p≤1 and divergent if p>1

3.  Convergent if p>1 and divergent if p≤1

4.  Convergent if p≥1 and divergent if p

4

Convergent if p>1 and divergent if p≤1

Explanation :
No Explanation available for this question

# The seriesis

1.  Convergent if x>0

2.  Divergent if x>0

3.  Convergent if x>1

4.  Divergent if -1

4

Divergent if x>0

Explanation :
No Explanation available for this question

1.

2.

3.

4.

4